C#数据结构与算法揭秘13

这节,我们来看看一下什么了,来看看图的遍历吧!

首先,搞清楚,图的遍历的基本的含义了。

图的遍历是指从图中的某个顶点出发,按照某种顺序访问图中的每个顶点,使每个顶点被访问一次且仅一次。图的遍历与树的遍历操作功能相似。图的遍历是图的一种基本操作,并且图的许多其他操作都是建立在遍历操作的基础之上的。遍历示意图,如图所示:

然而,图的遍历要比树的遍历复杂得多。这是因为图中的顶点之间是多对多的关系,图中的任何一个顶点都可能和其它的顶点相邻接。所以,在访问了某个顶点之后, 从该顶点出发, 可能沿着某条路径遍历之后, 又回到该顶点上。 例如,在下图中,由于图中存在回路,因此在访问了 A、B、C、D、E之后,沿着边<E,A>为图中顶点的数目。数组中元素的初始值全为 0,表示顶点都没有被访问过,如果顶点vi 被访问,visited[i-1]为 1。

图的遍历有深度优先遍历和广度优先遍历两种方式,它们对图和网都适用。 

首先,介绍了一些优先遍历。

图的深度优先遍历(Depth_First Search)类似于树的先序遍历,是树的先序遍历的推广。

我们先回顾一下树的先序遍历,如图所示:

他先序遍历结果是ABDEFCFG。

那图的图的深度优先遍历,究竟是那样的。

假设初始状态是图中所有顶点未曾被访问过, 则深度优先遍历可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接顶点出发深度优先遍历图,直至图中所有和v路径相通的顶点都被遍历过。若此时图中尚有未被访问的顶点,则另选图中一个未被访问的顶点作为起始点,重复上述过程,直到图中所有顶点都被访问到为止。

下图(a)所示的无向图的深度优先遍历的过程如下图(b)所示。假设从顶点 v1出发,在访问了顶点 v1之后,选择邻接顶点 v2,因为 v2未被访问过,所以从 v2出发进行深度优先遍历。依次类推,接着从 v4、v8、v5出发进行深度优先遍历。当访问了 v5之后,由于 v5的邻接顶点 v2和 v8都已被访问,所以遍历退回到 v8。由于同样的理由,遍历继续退回到 v4、v2 直到 v1。由于 v1 的另一个邻接顶点 v3未被访问,所以又从 v3开始进行深度优先遍历,这样得到该图的深度优先遍历的顶点序列v1→v2→v4→v8→v5→v3→v6→v7。

显然,这是一个递归的过程。下面以无向图的邻接表存储结构为例来实现图的深度优先遍历算法。在类中增设了一个整型数组的成员字段visited,它的初始值全为 0, 表示图中所有的顶点都没有被访问过。 如果顶点vi被访问, visited[i-1]为1。并且,把该算法作为无向图的邻接表类 GraphAdjList<T>的成员方法。

由于增设了成员字段 visited,所以在类的构造器中添加以下代码。

public GraphAdjList(Node<T>[] nodes)
{

adjList = new VexNode<T>[nodes.Length];
for (int i = 0; i < nodes.Length; ++i )
{
adjList[i].Data = nodes[i];
adjList[i].FirstAdj = null;
}

//以下为添加的代码

//所有的结点,都没有访问过。 都赋值为0
visited = new int[adjList.Length];
for (int i = 0; i < visited.Length; ++i)
{
visited[i] = 0;
}
}

由于,他是循环遍历,他的时间的复杂度是O(n).

无向图的深度优先遍历算法的实现如下:   
public void DFS()
{
for (int i = 0; i < visited.Length; ++i)
{
if (visited[i] == 0)
{
DFSAL(i);
}
}
}

//从某个顶点出发进行深度优先遍历
public void DFSAL(int i)
{
visited[i] = 1;
adjListNode<T> p = adjList[i].FirstAdj;

while (p != null)
{
if (visited[p.Adjvex] == 0)
{
DFSAL(p.Adjvex);
}

p = p.Next;
}
}

分析上面的算法,在遍历图时,对图中每个顶点至多调用一次DFS方法,因为一旦某个顶点被标记成已被访问,就不再从它出发进行遍历。因此,遍历图的过程实质上是对每个顶点查找其邻接顶点的过程。 其时间复杂度取决于所采用的存储结构。当图采用邻接矩阵作为存储结构时,查找每个顶点的邻接顶点的时间复杂度为O(n2),其中,n为图的顶点数。而以邻接表作为图的存储结构时,查找邻接顶点的时间复杂度为O(e),其中,e为图中边或弧的数目。因此,当以邻接表作为存储结构时,深度优先遍历图的时间复杂度为O(n+e)。具体情况,如图所示:

下面介绍广度遍历。

图的广度优先遍历(Breadth_First Search)类似于树的层序遍历。 我们回顾一下树的层次遍历,如图所示:

树的层次遍历结果为ABCDEFG。

那图的光序遍历为

假设从图中的某个顶点 v 出发,访问了 v 之后,依次访问 v 的各个未曾访问的邻接顶点。然后分别从这些邻接顶点出发依次访问它们的邻接顶点,并使“先被访问的顶点的邻接顶点”先于“后被访问的顶点的邻接顶点”被访问,直至图中所有已被访问的顶点的邻接顶点都被访问。若此时图中尚有顶点未被访问,则另选图中未被访问的顶点作为起点,重复上述过程,直到图中所有的顶点都被访问为止。换句话说,广度优先遍历图的过程是以某个顶点 v 作为起始点,由近至远,依次访问和 v 有路径相通且路径长度为 1,2,…的顶点。

图(a)所示的无向图的广度优先遍历的过程如图(b)所示。假设从顶点 v1开始进行广度优先遍历,首先访问顶点 v1和它的邻接顶点 v2和 v3,然后依次访问 v2 的邻接顶点 v4 和 v5,以及 v3 的邻接顶点 v6 和 v7,最后访问 v4b的邻接顶点 v8。由于这些顶点的邻接顶点都已被访问,并且图中所有顶点都已被访问,由此完成了图的遍历,得到的顶点访问序列为:v1→v2→v3→v4→v5→v6→v7→v8,其遍历过程如下图(b)所示。

和深度优先遍历类似,在广度优先遍历中也需要一个访问标记数组,我们采用与深度优先遍历同样的数组。并且,为了顺序访问路径长度为 1,2,…的顶点,需在算法中附设一个队列来存储已被访问的路径长度为 1,2,…的顶点。 以邻接表作为存储结构的无向图的广度优先遍历算法的实现如下, 队列是循环顺序队列。

public void BFS()
{
for (int i = 0; i < visited.Length; ++i)
{

//所有结点的都没有遍历
if (visited[i] == 0)
{
BFSAL(i);
}
}
}

//从某个顶点出发进行广度优先遍历
public void BFSAL(int i)
{
visited[i] = 1;
CSeqQueue<int> cq = new CSeqQueue<int>(visited.Length);

while (!cq.IsEmpty())
{
int k = cq.Out();
adjListNode<T> p = adjList[k].FirstAdj;

while (p != null)
{
if (visited[p.Adjvex] == 0)
{
visited[p.Adjvex] = 1;
cq.In(p.Adjvex);
}

p = p.Next;
}
}
}

算法的复杂度是O(n2),具体情况,如图所示:

 

cq.In(i);

分析上面的算法,每个顶点至多入队列一次。遍历图的过程实质上是通过边或弧查找邻接顶点的过程,因此,广度优先遍历算法的时间复杂度与深度优先遍历相同,两者的不同之处在于对顶点的访问顺序不同。

这就是图的遍历,极其算法的实现,下届,我们讨论图的应用。

时间: 2024-09-16 13:15:23

C#数据结构与算法揭秘13的相关文章

C#数据结构与算法揭秘六

这节我们讨论两种用的蛮多的数据结构--串和数组 首先,老样子,什么是串,这里串不是吃的牛肉串,羊肉串,而是字符串.在应用程序中使用最频繁的类型是字符串.字符串简称串,是一种特殊的线性表,其特殊性在于串中的数据元素是一个个的字符.字符串在计算机的许多方面应用很广.如在汇编和高级语言的编译程序中,源程序和目标程序都是字符串数据.在事务处理程序中,顾客的信息如姓名.地址等及货物的名称.产地和规格等,都被作为字符串来处理.另外,字符串还具有自身的一些特性.因此,把字符串作为一种数据结构来研究.具体情况,

C#数据结构与算法揭秘二

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二 线性结构_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘19

这节,我们介绍基数排序和归并排序. 一.基数排序 基数排序(Radix Sort)的设计思想与前面介绍的各种排序方法完全不同.前面介绍的排序方法主要是通过关键码的比较和记录的移动这两种操作来实现排序的,而基数排序不需要进行关键码的比较和记录的移动.基数排序是一种借助于多关键码排序的思想,是将单关键码按基数分成多关键码进行排序的方法,是一种分配排序. 下面用一个具体的例子来说明多关键码排序的思想. 一副扑克牌有 52 张牌,可按花色和面值进行分类,其大小关系如下: 花色:梅花<方块<红心<

C#数据结构与算法揭秘九

这节,我们说一说二叉树常见的应用的场景.呵呵.............. 定义一个哈夫曼树,首先,要高清楚什么是哈夫曼树.所谓哈夫曼树是又叫最优二叉树,指的是对于一组具有确定权值的叶子结点的具有最小带权路径长度的二叉树. 介绍哈夫曼树的一些基本概念. (1)路径(Path):从树中的一个结点到另一个结点之间的分支构成这两个结点间的路径. (2)路径长度(Path Length):路径上的分支数. (3)树的路径长度(Path Length of Tree):从树的根结点到每个结点的路径长度之和.

C#数据结构与算法揭秘15

这节,我们主要讨论,一下克鲁斯卡尔算法实现 最小生成树.  克鲁斯卡尔算法的基本思想是:对一个有 n个顶点的无向连通网,将图中的边按权值大小依次选取,若选取的边使生成树不形成回路,则把它加入到树中:若形成回路,则将它舍     弃.如此进行下去,直到树中包含有 n-1条边为止. 以下图 (a)为例说明用克鲁斯卡尔算法求无向连通网最小生成树的过程. 第一步:首先比较网中所有边的权值,找到最小的权值的边(D,E),加入到生成树的边集 TE 中,TE={(D,E)}. 第二步:再比较图中除边(D,E)

C#数据结构与算法揭秘五

这节我们讨论了两种好玩的数据结构,栈和队列. 老样子,什么是栈, 所谓的栈是栈(Stack)是操作限定在表的尾端进行的线性表.表尾由于要进行插入.删除等操作,所以,它具有特殊的含义,把表尾称为栈顶(Top) ,另一端是固定的,叫栈底(Bottom) .当栈中没有数据元素时叫空栈(Empty Stack).这个类似于送饭的饭盒子,上层放的是红烧肉,中层放的水煮鱼,下层放的鸡腿.你要把这些菜取出来,这就引出来了栈的特点先进后出(First in last out).   具体叙述,加下图. 栈通常记

C#数据结构与算法揭秘16

这节我们就用的最多的算法--排序发起重点的讨论.   常见的排序分为冒泡排序,快速排序,直接插入排序 ,希尔排序,基数排序 ,简单选择排序 ,堆排序  等等. 一.冒泡排序 冒泡排序(Bubble Sort)的基本思想是:将相邻的记录的关键码进行比较,若前面记录的关键码大于后面记录的关键码,则将它们交换,否则不交换. 设待排序的顺序表 sqList 中有 n 个记录,冒泡排序要进行 n-1 趟,每趟循环均是从最后两个记录开始. 第 1 趟循环到第 2 个记录的关键码与第 1 个记录的关键码比较后