高可用Hadoop平台-Flume NG实战图解篇

1.概述

  今天补充一篇关于Flume的博客,前面在讲解高可用的Hadoop平台的时候遗漏了这篇,本篇博客为大家讲述以下内容:

  • Flume NG简述
  • 单点Flume NG搭建、运行
  • 高可用Flume NG搭建
  • Failover测试
  • 截图预览

  下面开始今天的博客介绍。

2.Flume NG简述

  Flume NG是一个分布式,高可用,可靠的系统,它能将不同的海量数据收集,移动并存储到一个数据存储系统中。轻量,配置简单,适用于各种日志收集,并支持Failover和负载均衡。并且它拥有非常丰富的组件。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和Sink,三者组建了一个Agent。三者的职责如下所示:

  • Source:用来消费(收集)数据源到Channel组件中
  • Channel:中转临时存储,保存所有Source组件信息
  • Sink:从Channel中读取,读取成功后会删除Channel中的信息

  下图是Flume NG的架构图,如下所示:

  图中描述了,从外部系统(Web Server)中收集产生的日志,然后通过Flume的Agent的Source组件将数据发送到临时存储Channel组件,最后传递给Sink组件,Sink组件直接把数据存储到HDFS文件系统中。

3.单点Flume NG搭建、运行

  我们在熟悉了Flume NG的架构后,我们先搭建一个单点Flume收集信息到HDFS集群中,由于资源有限,本次直接在之前的高可用Hadoop集群上搭建Flume。

  场景如下:在NNA节点上搭建一个Flume NG,将本地日志收集到HDFS集群。

3.1基础软件

  在搭建Flume NG之前,我们需要准备必要的软件,具体下载地址如下所示:

  JDK由于之前在安装Hadoop集群时已经配置过,这里就不赘述了,若需要配置的同学,可参考《配置高可用的Hadoop平台》。

3.2安装与配置

  • 安装

  首先,我们解压flume安装包,命令如下所示:

[hadoop@nna ~]$ tar -zxvf apache-flume-1.5.2-bin.tar.gz
  • 配置

  环境变量配置内容如下所示:

export FLUME_HOME=/home/hadoop/flume-1.5.2
export PATH=$PATH:$FLUME_HOME/bin

  flume-conf.properties

#agent1 name
agent1.sources=source1
agent1.sinks=sink1
agent1.channels=channel1

#Spooling Directory
#set source1
agent1.sources.source1.type=spooldir
agent1.sources.source1.spoolDir=/home/hadoop/dir/logdfs
agent1.sources.source1.channels=channel1
agent1.sources.source1.fileHeader = false
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = timestamp

#set sink1
agent1.sinks.sink1.type=hdfs
agent1.sinks.sink1.hdfs.path=/home/hdfs/flume/logdfs
agent1.sinks.sink1.hdfs.fileType=DataStream
agent1.sinks.sink1.hdfs.writeFormat=TEXT
agent1.sinks.sink1.hdfs.rollInterval=1
agent1.sinks.sink1.channel=channel1
agent1.sinks.sink1.hdfs.filePrefix=%Y-%m-%d

#set channel1
agent1.channels.channel1.type=file
agent1.channels.channel1.checkpointDir=/home/hadoop/dir/logdfstmp/point
agent1.channels.channel1.dataDirs=/home/hadoop/dir/logdfstmp

  flume-env.sh

JAVA_HOME=/usr/java/jdk1.7

  注:配置中的目录若不存在,需提前创建。

3.3启动

  启动命令如下所示:

flume-ng agent -n agent1 -c conf -f flume-conf.properties -Dflume.root.logger=DEBUG,console

  注:命令中的agent1表示配置文件中的Agent的Name,如配置文件中的agent1。flume-conf.properties表示配置文件所在配置,需填写准确的配置文件路径。

3.4效果预览

  之后,成功上传后本地目的会被标记完成。如下图所示:

 4.高可用Flume NG搭建

  在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:

  图中,我们可以看出,Flume的存储可以支持多种,这里只列举了HDFS和Kafka(如:存储最新的一周日志,并给Storm系统提供实时日志流)。

4.1节点分配

  Flume的Agent和Collector分布如下表所示:

名称  HOST 角色
Agent1 10.211.55.14 Web Server
Agent2 10.211.55.15 Web Server
Agent3 10.211.55.16  Web Server
Collector1 10.211.55.18 AgentMstr1
Collector2 10.211.55.19 AgentMstr2

 

  图中所示,Agent1,Agent2,Agent3数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。在上图中,有3个产生日志服务器分布在不同的机房,要把所有的日志都收集到一个集群中存储。下面我们开发配置Flume NG集群

4.2配置

  在下面单点Flume中,基本配置都完成了,我们只需要新添加两个配置文件,它们是flume-client.properties和flume-server.properties,其配置内容如下所示:

  • flume-client.properties

#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2

#set gruop
agent1.sinkgroups = g1 

#set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100

agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /home/hadoop/dir/logdfs/test.log

agent1.sources.r1.interceptors = i1 i2
agent1.sources.r1.interceptors.i1.type = static
agent1.sources.r1.interceptors.i1.key = Type
agent1.sources.r1.interceptors.i1.value = LOGIN
agent1.sources.r1.interceptors.i2.type = timestamp

# set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = nna
agent1.sinks.k1.port = 52020

# set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = nns
agent1.sinks.k2.port = 52020

#set sink group
agent1.sinkgroups.g1.sinks = k1 k2

#set failover
agent1.sinkgroups.g1.processor.type = failover
agent1.sinkgroups.g1.processor.priority.k1 = 10
agent1.sinkgroups.g1.processor.priority.k2 = 1
agent1.sinkgroups.g1.processor.maxpenalty = 10000

  注:指定Collector的IP和Port。

  • flume-server.properties

#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1

#set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = nna
a1.sources.r1.port = 52020
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = Collector
a1.sources.r1.interceptors.i1.value = NNA
a1.sources.r1.channels = c1

#set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=/home/hdfs/flume/logdfs
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=1
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d

  注:在另一台Collector节点上修改IP,如在NNS节点将绑定的对象有nna修改为nns。

4.3启动

  在Agent节点上启动命令如下所示:

flume-ng agent -n agent1 -c conf -f flume-client.properties -Dflume.root.logger=DEBUG,console

  注:命令中的agent1表示配置文件中的Agent的Name,如配置文件中的agent1。flume-client.properties表示配置文件所在配置,需填写准确的配置文件路径。

  在Collector节点上启动命令如下所示:

flume-ng agent -n a1 -c conf -f flume-server.properties -Dflume.root.logger=DEBUG,console

  注:命令中的a1表示配置文件中的Agent的Name,如配置文件中的a1。flume-server.properties表示配置文件所在配置,需填写准确的配置文件路径。

5.Failover测试

  下面我们来测试下Flume NG集群的高可用(故障转移)。场景如下:我们在Agent1节点上传文件,由于我们配置Collector1的权重比Collector2大,所以Collector1优先采集并上传到存储系统。然后我们kill掉Collector1,此时有Collector2负责日志的采集上传工作,之后,我们手动恢复Collector1节点的Flume服务,再次在Agent1上次文件,发现Collector1恢复优先级别的采集工作。具体截图如下所示:

  • Collector1优先上传

  • HDFS集群中上传的log内容预览

  • Collector1宕机,Collector2获取优先上传权限

  • 重启Collector1服务,Collector1重新获得优先上传的权限

6.截图预览

  下面为大家附上HDFS文件系统中的截图预览,如下图所示:

  • HDFS文件系统中的文件预览

  • 上传的文件内容预览

7.总结

  在配置高可用的Flume NG时,需要注意一些事项。在Agent中需要绑定对应的Collector1和Collector2的IP和Port,另外,在配置Collector节点时,需要修改当前Flume节点的配置文件,Bind的IP(或HostName)为当前节点的IP(或HostName),最后,在启动的时候,指定配置文件中的Agent的Name和配置文件的路径,否则会出错。

8.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

时间: 2025-01-21 01:39:52

高可用Hadoop平台-Flume NG实战图解篇的相关文章

高可用Hadoop平台-实战

1.概述 今天继续<高可用的Hadoop平台>系列,今天开始进行小规模的实战下,前面的准备工作完成后,基本用于统计数据的平台都拥有了,关于导出统计结果的文章留到后面赘述.今天要和大家分享的案例是一个基于电商网站的用户行为分析,这里分析的指标包含以下指标: 统计每日PV 每日注册用户 每日IP 跳出用户 其他指标可以参考上述4个指标进行拓展,下面我们开始今天的分析之旅. 2.流程 首先,在开发之前我们需要注意哪些问题?我们不能盲目的按照自己的意愿去开发项目,这样到头来得不到产品的认可,我们的工作

高可用Hadoop平台-实战尾声篇

1.概述 今天这篇博客就是<高可用Hadoop平台>的尾声篇了,从搭建安装到入门运行 Hadoop 版的 HelloWorld(WordCount 可以称的上是 Hadoop 版的 HelloWorld ),在到开发中需要用到的各个套件以及对套件的安装使用,在到 Hadoop 的实战,一路走来我们对在Hadoop平台下开发的基本流程应该都熟悉了.今天我们来完成在高可用Hadoop平台开发的最后一步,导出数据. 2.导出数据目的 首先,我来说明下为什么要导出数据,导出数据的目的是为了干嘛? 我们

高可用Hadoop平台-启航

1.概述 在上篇博客中,我们搭建了<配置高可用Hadoop平台>, 接下来我们就可以驾着Hadoop这艘巨轮在大数据的海洋中遨游了.工欲善其事,必先利其器.是的,没错:我们开发需要有开发工具(IDE):本篇文章, 我打算讲解如何搭建和使用开发环境,以及编写和讲解WordCount这个例子,给即将在Hadoop的海洋驰骋的童鞋入个门.上次,我在<网站日志统计案例分析与实现>中说会将源码放到Github,后来,我考虑了下,决定将<高可用的Hadoop平台>做一个系列,后面基

高可用Hadoop平台-集成Hive HAProxy

1.概述 这篇博客是接着<高可用Hadoop平台>系列讲,本篇博客是为后面用 Hive 来做数据统计做准备的,介绍如何在 Hadoop HA 平台下集成高可用的 Hive 工具,下面我打算分以下流程来赘述: 环境准备 集成并配置 Hive 工具 使用 Java API 开发 Hive 代码 下面开始进行环境准备. 2.环境准备 Hive版本:<Hive-0.14> HAProxy版本:<HAProxy-1.5.11> 注:前提是 Hadoop 的集群已经搭建完成,若还没

高可用Hadoop平台-探索

1.概述 上篇<高可用Hadoop平台-启航>博客已经让我们初步了解了Hadoop平台:接下来,我们对Hadoop做进一步的探索,一步一步的揭开Hadoop的神秘面纱.下面,我们开始赘述今天的探索之路. 2.探索 在探索之前,我们来看一下Hadoop解决了什么问题,Hadoop就是解决了大数据(大到单台服务器无法进行存储,单台服务器无法在限定的时间内进行处理)的可靠存储和处理. HDFS:在由普通或廉价的服务器(或PC)组成的集群上提供高可用的文件存储,通过将块保存多个副本的办法解决服务器或硬

高可用Hadoop平台-HBase集群搭建

1.概述 今天补充一篇HBase集群的搭建,这个是高可用系列遗漏的一篇博客,今天抽时间补上,今天给大家介绍的主要内容目录如下所示: 基础软件的准备 HBase介绍 HBase集群搭建 单点问题验证 截图预览 那么,接下来我们开始今天的HBase集群搭建学习. 2.基础软件的准备 由于HBase的数据是存放在HDFS上的,所以我们在使用HBase时,确保Hadoop集群已搭建完成,并运行良好.若是为搭建Hadoop集群,请参考我写的<配置高可用的Hadoop平台>来完成Hadoop平台的搭建.另

高可用Hadoop平台-Ganglia安装部署

1.概述 最近,有朋友私密我,Hadoop有什么好的监控工具,其实,Hadoop的监控工具还是蛮多的.今天给大家分享一个老牌监控工具 Ganglia,这个在企业用的也算是比较多的,Hadoop对它的兼容也很好,不过就是监控界面就不是很美观.下次给大家介绍另一款工具--Hue,这 个界面官方称为Hadoop UI,界面美观,功能也比较丰富.今天,在这里主要给大家介绍Ganglia这款监控工具,介绍的内容主要包含如下: Ganglia背景 Ganglia安装部署.配置 Hadoop集群配置Gangl

高可用Hadoop平台-答疑篇

1.概述 这篇博客不涉及到具体的编码,只是解答最近一些朋友心中的疑惑.最近,一些朋友和网友纷纷私密我,我总结了一下,疑问大致包含以下几点: 我学 Hadoop 后能从事什么岗位? 在遇到问题,我该如何去寻求解决方案? 针对以上问题,我在这里赘述下个人的经验,给即将步入 Hadoop 行业的同学做个参考. 2.我学 Hadoop 后能从事什么岗位 目前 Hadoop 相关的工作大致分为三类:应用,运维,二次开发 2.1 应用 这方面的主要工作是编写MapReduce作业,利用Hive之类的套件来进

高可用Hadoop平台-应用JAR部署

1.概述 今天在观察集群时,发现NN节点的负载过高,虽然对NN节点的资源进行了调整,同时对NN节点上的应用程序进行重新打包调整,负载问题暂时得到 缓解.但是,我想了想,这样也不是长久之计.通过这个问题,我重新分析了一下以前应用部署架构图,发现了一些问题的所在,之前的部署架构是,将打包的应用 直接部署在Hadoop集群上,虽然这没什么不好,但是我们分析得知,若是将应用部署在DN节点,那么时间长了应用程序会不会抢占DN节点的资源,那么如 果我们部署在NN节点上,又对NN节点计算任务时造成影响,于是,