poj 1273 Drainage Ditches

click here ~~

                               Drainage Ditches

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond. 

Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output
50

题目大意:
现在有m个池塘(从1到m开始编号,1为源点,m为汇点),
及n条水渠,给出这n条水渠所连接的池塘和所能流过的水量,
求水渠中所能流过的水的最大容量.一道基础的最大流题目

解题思路:这是一个裸的最大流问题,就是套模板。。。。

具体我也是看大神的代码整的,这个模板还是不错的,都给出了详细的解释;
上代码:

/*
Date : 2015-8-21下午

Author : ITAK

Motto :

今日的我要超越昨日的我,明日的我要胜过今日的我;
以创作出更好的代码为目标,不断地超越自己。
*/
#include <iostream>
#include <cstdio>

using namespace std;
///oo表示无穷大
const int oo = 1e9+5;
///mm表示边的最大数量,因为要双向建边
const int mm = 111111;
///点的最大数量
const int mn = 1000;
///node:节点数,src:源点,dest:汇点,edge:边数
int node, src, dest, edge;
///ver:边指向的结点,flow:边的流量,next:链表的下一条边
int ver[mm], flow[mm], next[mm];
///head:节点的链表头,work:用于算法中的临时链表头,dis:距离
int head[mn], work[mn], dis[mn], q[mn];

///初始化
void Init(int _node, int _src, int _dest)
{
    node = _node, src = _src, dest = _dest;
    for(int i=0; i<node; i++)
        head[i] = -1;
    edge = 0;
}

///增加边
void addedge(int u, int v, int c)
{
    ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
    ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}

///广搜计算出每个点与源点的最短距离,如果不能到达汇点说明算法结束
bool Dinic_bfs()
{
    int i, u, v, l, r = 0;
    for(i=0; i<node; i++)
        dis[i] = -1;
    dis[q[r++]=src] = 0;
    for(l=0; l<r; l++)
        for(i=head[u=q[l]]; i>=0; i=next[i])
            if(flow[i] && dis[v=ver[i]]<0)
            {
                ///这条边必须有剩余流量
                dis[q[r++]=v] = dis[u] + 1;
                if(v == dest)
                    return 1;
            }
    return 0;
}

///寻找可行流的增广路算法,按节点的距离来找,加快速度
int Dinic_dfs(int u, int exp)
{
    if(u == dest)
        return exp;
    ///work 是临时链表头,这里用 i 引用它,这样寻找过的边不再寻找*
    for(int &i=work[u],v,tmp; i>=0; i=next[i])
    {
        if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
        {
            ///正反向边容量改变
            flow[i] -= tmp;
            flow[i^1] += tmp;
            return tmp;
        }
    }

    return 0;
}

///求最大流,直到没有可行流
int Dinic_flow()
{
    int i, ret=0, data;
    while(Dinic_bfs())
    {
        for(i=0; i<node; i++)
            work[i] = head[i];
        while(data = Dinic_dfs(src, oo))
            ret += data;//cout<<666<<endl;
    }

    return ret;
}
int main()
{
    ///套模板
    int m, n, u, v, c;
    while(~scanf("%d%d",&n,&m))
    {
        Init(m+1, 1, m);
        while(n--)
        {
            scanf("%d%d%d",&u,&v,&c);
            addedge(u, v, c);
        }
        printf("%d\n",Dinic_flow());
    }
    return 0;
}
时间: 2024-09-14 11:51:22

poj 1273 Drainage Ditches的相关文章

[usaco]4.2.1 最大流问题Drainage Ditches

  Drainage Ditches Hal Burch Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a

POJ题目分类

初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      (4)递推.      (5)构造法.(poj3295)      (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法:      (1)图的深度优先遍历和广度优先遍历.      (2)最短路径算法(dijkstra,bellman-ford

poj分类

初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      (4)递推.      (5)构造法.(poj3295)      (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法:      (1)图的深度优先遍历和广度优先遍历.      (2)最短路径算法(dijkstra,bellman-ford

hduoj题目分类

基础题:1000.1001.1004.1005.1008.1012.1013.1014.1017.1019.1021.1028.1029.1032.1037.1040.1048.1056.1058.1061.1070.1076.1089.1090.1091.1092.1093.1094.1095.1096.1097.1098.1106.1108.1157.1163.1164.1170.1194.1196.1197.1201.1202.1205.1219.1234.1235.1236.1248.1

ACM练级

一般要做到50行以内的程序不用调试.100行以内的二分钟内调试成功.acm主要是考算法的 ,主要时间是花在思考算法上,不是花在写程序与debug上.  下面给个计划你练练: 第一阶段: 练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码, 因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打 出来.  1.最短路(Floyd.Dijstra,BellmanFord)  2.最小生成树(先写个prim,kruscal要用并查集,不好写)  3.大数(

最大流-hdoj-1532

hdoj-1532-Drainage Ditches Problem Description Every time it rains on Farmer John's fields, a pond forms over  Bessie's favorite clover patch.  This means that the clover is covered by water for a while and  takes quite along time to regrow.  Thus, F

POJ:DNA Sorting 特殊的排序

Description One measure of ``unsortedness'' in a sequence is the number of pairs of entries that are out of order with respect to each other. For instance, in the letter sequence ``DAABEC'', this measure is 5, since D is greater than four letters to

POJ 1001 Exponentiation 无限大数的指数乘法 题解

POJ做的很好,本题就是要求一个无限位大的指数乘法结果. 要求基础:无限大数位相乘 额外要求:处理特殊情况的能力 -- 关键是考这个能力了. 所以本题的用例特别重要,再聪明的人也会疏忽某些用例的. 本题对程序健壮性的考查到达了变态级别了. 更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/ 某人贴出的测试用例数据地址: http://poj.org/showmessage?message_id=76017 有

POJ 2240 Arbitrage:最短路 Floyd

Arbitrage:http://poj.org/problem?id=2240 大意: 给你m种货币,给你m种货币兑换规则,问通过这些规则最后能不能盈利.eg:1美元换0.5英镑,1英镑换10法郎,1法郎换0.21美元,这样1美元能换0.5*10*0.21=1.05美元,净赚0.05美元. 思路: 用Floyd找出每两种钱之间的最大兑换关系,遍历一遍,看有没有那种钱币最后能盈利,有就输出Yes,没有就是No.在处理钱币名称与编号之间的关系时,可以用map存(比较好用),当然也可以用字符串比较.