《中国人工智能学会通讯》——6.4 基于深度学习的知识图谱构建

6.4 基于深度学习的知识图谱构建

随着深度学习在自然语言处理领域应用的不断深入,人们也开始尝试将深度神经网络用于知识图谱的自动构建。在此,以实体和关系的表示学习技术为基础,讨论深度学习在命名实体识别、关系抽取、关系补全等任务上的应用。

命名实体识别

命名实体识别是从文本中提取出和人名、地名等特定的短语或名称的任务。早期的命名实体识别主要基于规则和词典来进行,对规律性较强的文本环境较为适合,但难以摆脱对领域专家的的依赖,费时费力且难以移植[28] 。随着语料数据的增长,研究者逐步将机器学习和统计分析技术应用于命名实体识别,其方法可以分为有监督、半监督和无监督的方法。

有监督方法基于序列标注思想,结合大量标注语料,定义一系列实体来训练判别模型。传统模型包括隐马尔科夫模型(HMM) [29] 、最大熵马尔科夫模型(MEMM) [30] 、条件随机场(CRF) [31] 等。在深度学习领域,针对序列标注的思路,研究者将卷积神经网络[18]和循环神经网络[21]用于该任务,结合词语的表示学习,取得了优于传统方法的结果。

半 监 督( 或 弱 监 督) 方 法 主 要 采 用 boot-strapping 技术,只利用很少的标注数据作为种子开始学习,结合大量无标注数据,通过模板、句法分析树等方式迭代地从上下文中发现实体[32] 。

无监督方法则在无标注数据集的情况下,采用聚类等方法,利用类似的上下文推测出类似的概念和实例;或者基于外部知识(如 WordNet 等),完成从一个领域到另一领域的迁移学习。随着文本数据资源的不断丰富,研究者结合词的向量表示和已有的词典等信息,利用词向量之间的相对关系 ( 如v (king) -v(queen) = v(man) -v(woman)) 通过训练词向量和评估词语之间的投射关系矩阵,发现新的上下位实体[33-36] 。

关系抽取和补全

关系抽取是指从无结构的自然语言文本中找出实体之间的语义关系。早期主要采用基于规则的方法,提前定义关系所对应的结构规则,进行特定领域的关系抽取。而后,主要采用基于特征和核函数的方法,前者主要通过提取文本的语法特征[37]来构建关系的分类器;后者则利用短语句法、依存语法、实体之间路径关系等信息设计相应的核函数,并通过核函数计算两个实例的关系来完成关系抽取[38] 。近期,研究者将循环神经网络等深度学习技术应用于关系抽取中。例如,Xu et al [39] 提出一种基于 LSTM 循环神经网络的方法,对自然语言语句的依存树中不同实体间的最短依赖路径进行分析,以确定实体间关系的类别,该方法证实了深度神经网络在关系抽取中的有效性。

关系补全是基于知识库中已有的知识,进行推理或计算,对知识库中缺少的关系进行填补的任务。根据分析目标的不同可以分为两个方面,一是已知某关系两端的实体,求取两实体之间的关系;二是已知某个实体和与之关联的关系,求取该关系另一端的实体。前者可称为链接预测,后者可称为实体预测。当前,常见的关系补全方法包括基于张量重构的方法和基于翻译模型的方法等。基于张量重构的方法,以 RESCAL 系统为主要代表[40-42] ,将知识库的整个实体关系网络看作三维张量,其中每个二维切片是对一种关系的描述,该方法将整个知识库的信息进行编码整合,推理过程计算量小,但当知识库规模较大时,张量重构的代价较大。基于翻译模型的方法则将知识库中的关系看作实体间的平移向量,即将关系三元组 < 实体 S,关系 P,实体O> 中的尾部实体 O 看作头部实体 S 经过关系 P 的翻译结果。Trans* 系列模型是这类方法的代表。其中,Bordes et al [43] 提出的 TransE 模型通过结合实体和关系的表示学习,对知识库中的 1-1 关系进行补全。在此基础上,为了近一步处理1-N、N-1、N-N等复杂关系,出现了 TransII、TransR 等模型[44-45] ,为了将孤立三元组关系的语义融合为关系路径的语义,出现了 PTransE 模型[46] ,为了近一步融合知识库三元组关系和外部文本知识,出现了 DKRL 模型[47]等。

时间: 2024-12-05 12:44:20

《中国人工智能学会通讯》——6.4 基于深度学习的知识图谱构建的相关文章

《中国人工智能学会通讯》——1.40 深度学习

1.40 深度学习 罗曼·扬波利斯基是路易斯维尔大学网络安全实验室主任.他认为,2016 年,我们将看到卷积神经网络(深度学习)领域的迅速发展,超级计算机的使用将使这个领域成为 2016 年人工智能发展的重点. 浅层学习是机器学习的第一次浪潮,主要是计算机系统从大量训练样本中学习统计规律,对未知事件做预测,实际上这种人工神经网络只是一种浅层模型. 深度学习是指通过构建多层的机器学习模型和海量训练数据来学习更有用的特征,目的在于建立.模拟人脑进行学习的神经网络,模仿人脑来解释数据,深度学习是无监督

《中国人工智能学会通讯》——6.3 深度学习的基础模型

6.3 深度学习的基础模型 深度学习(Deep Learning)源于人工神经网络(简称神经网络),其初衷是从仿生学角度建立模拟人脑学习的神经元网络结构,从而模仿人脑的机制来解释数据.早期的神经网络是浅层神经网络,通常仅含有单个输入层.少量隐藏层和单个输出层,输入通常是人工提取的特征.其连接方式是,从输入层开始到输出层结束,中间各层接收前一级输入,并输入到下一级,整个网络中无反馈,因而又称为前馈网络.而深度学习的模型是深度神经网络,较之浅层神经网络,它具有较多的隐藏层和复杂的连接方式,因而能够自

《中国人工智能学会通讯》——1.31 深度学习 在自然语言处理研究上的进展

1.31 深度学习 在自然语言处理研究上的进展 近年来,深度学习在人工智能的多个子领域都取得了显著的进展.在自然语言处理领域,虽然深度学习方法也收到越来越多的关注,在很多任务上也取得了一定效果,但是并没有其他领域那么显著.传统的主流自然语言处理方法是基于统计机器学习的方法,所使用的特征大多数是基于 onehot 向量表示的各种组合特征.这个特征表示方式会导致特征空间非常大,但也带来一个优点.就是在非常高维的特征空间中,很多任务上都是近似线性可分的.因此,在很多任务上,使用线性分类器就是可以取得比

《中国人工智能学会通讯》——7.13 深度学习与分布式表示学习概览

7.13 深度学习与分布式表示学习概览 深度学习的概念源于人工神经网络的研究.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的有效表示,而这种使用相对较短.稠密的向量表示叫做分布式特征表示(也可以称为嵌入式表示).本部分主要对于目前使用较广的一些学习算法进行一个简单的回顾. 首先介绍一些浅层的分布式表示模型.目前在文本领域,浅层分布式表示模型得到了广泛的使用,例如 word2vec.GloVec 等[6] .与传统词袋模型对比,词嵌入模型可以将词或者其他信息单元(例如短

《中国人工智能学会通讯》——7.11 深度学习在推荐算法上的应用进展

7.11 深度学习在推荐算法上的应用进展 最近几年是深度学习发展的黄金时间,其在多个领域取得了重要进展,包括图像领域.语音领域.文本领域等.深度学习为科研工作者提供了一种非常有效的技术途径,其本质上是对数据特征进行深层次的抽象挖掘,通过大规模数据来学习有效的特征表示以及复杂映射机制,从而建立有效的数据模型.从方法上来说,深度学习具有的优点本质上是领域无关的.因此,在可预见的未来,深度学习将会作为一种较为通用的数据建模方法,对于多个潜在领域的应用产生重要影响. 在信息大数据时代,用户的个性化需求不

《中国人工智能学会通讯》——2.18 深度学习算法的计算与访存特征

2.18 深度学习算法的计算与访存特征 图 1 是一个用于手写识别的深度卷积神经元网络 LeNet5 [6] ,以此为例讨论深度学习算法的计算特征.在 LeNet5 中,包括了卷积层 C1.C3.C5 和Subsampling 层 S2.S4,以及全连接层 F6.其中卷积层是最为费时的操作. 对 于 有 R 个 输 入 feature map 和 Q 个 输 出feature map 的卷积层,假设 feature map 的大小为 M×N,卷积核的大小为 K×L,则该卷积层的代码大致可以表示为

《中国人工智能学会通讯》——7.20 当搜索引擎遇见知识图谱

7.20 当搜索引擎遇见知识图谱 新世纪以来,基于文本信息检索的搜索引擎获得了巨大的成功,谷歌.必应.百度等商业搜索引擎彻底改变了人们获取信息的方式,影响着我们生活的方方面面.作为人工智能学科最著名,同时也是商业上最成功的应用之一,搜索引擎技术受到了工业界和学术界的广泛关注.近年来,随着自然语言处理.信息抽取等技术的发展,计算机开始能够更精确地从海量文本数据.从自动学习和抽取人类的先验知识.这些知识进而被抽象成计算机可以理解的数据形式,储存在大规模具有跨领域覆盖度的知识图谱之中.学术界和工业界也

《中国人工智能学会通讯》——11.30 深度迁移学习

11.30 深度迁移学习 随着互联网技术在各个领域的广泛应用,特别是社会网络,以及移动计算的崛起,文本.图像.视频等非结构化数据呈现出指数式增长,迫切需要有效的数据分析方法和高效的数据处理算法.机器学习作为大数据智能化分析的主要技术基石,在理论和实践两方面都取得了飞速进展,特别是在深度学习[1]上取得了革命性突破. 虽然人们已经能够通过信息系统.社会媒体.移动计算.工业互联网等渠道收集到大规模.多模态.高维度.快速变化的大数据,但大数据中高价值的标记数据还是比较稀缺的.从监督机器学习的视角来看,

《中国人工智能学会通讯》——11.77 特征学习模型在天文光谱识别中的 应用

11.77 特征学习模型在天文光谱识别中的 应用 随着新一代巡天观测.时域观测等天文项目的推进,当前的天文数据以"雪崩"之势增长[18] ,由此导致了天文数据自动挖掘方法研究的必要性和迫切性.国际上,近年来大规模图像巡天和大样本光谱巡天方面已经取得了长足的进展[19] ,特别是一系列光谱巡天计划的成功实施,使人们获得了空前丰富的恒星光谱资料,推动了天文学各个分支的蓬勃发展.恒星光谱,无论是连续谱还是线谱,差异极大.恒星光谱主要取决于恒星的物理性质和化学组成.因此,恒星光谱类型的差异反映