[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性

试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.

 

证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\sex{{\bf y}\times\cfrac{\p {\bf v}}{\p t}}\rd x,\\ \int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t&=\int_{S_t} ({\bf y}\times {\bf T}{\bf \nu})\rd S_t\\ &=\int_{S_0} ({\bf y}\times {\bf P}{\bf n})\rd S_0,\\ \int_{G_t}\rho({\bf y}\times{\bf b})\rd y&=\int_{G_0} \rho_0({\bf y}\times{\bf b})\rd x \eea \eeex$$ 知 $$\bex \int_{G_0}\rho_0{\bf y}\times\sex{\cfrac{\p{\bf v}}{\p t}-{\bf b}}\rd x =\int_{S_0}({\bf y}\times{\bf P}{\bf n})\rd S_0.  \eex$$ 由动量矩守恒定律 (3. 43) 知 $$\bex {\bf I}\equiv \int_{G_0} {\bf y}\times \Div_x{\bf P}\rd x =\int_{S_0} ({\bf y}\times{\bf P}{\bf n})\rd S_0\equiv {\bf J}. \eex$$ 写成分量形式为 $$\beex \bea I_i&=\int_{G_0} \sum_{j,k,l}\ve_{ijk} y_j\cfrac{\p P_{kl}}{\p x_l}\rd x,\\ J_i&=\int_{S_0}\sum_{j,k}\ve_{ijk}y_j({\bf P}{\bf n})_k\rd S_0\\ &=\int_{S_0}\sum_{j,k,l} \ve_{ijk} y_jP_{kl}n_l\rd S_0\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} \cfrac{\p}{\p x_l}(y_jP_{kl})\rd x\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} f_{jl}P_{kl}+y_j\cfrac{\p p_{kl}}{\p x_l}\rd x.  \eea \eeex$$ 于是 $$\bex \sum_{j,k,l}\ve_{ijk}f_{jl}P_{kl}=0.  \eex$$ 分别取 $i=1,2,3$ 有 $$\beex \bea \sum_l (f_{2l}P_{3l}-f_{3l}P_{2l})&=0,\\ \sum_l (f_{3l}P_{1l}-f_{1l}P_{3l})&=0,\\ \sum_l (f_{1l}P_{2l}-f_{2l}P_{1l})&=0.  \eea \eeex$$ 此即 $$\bex ({\bf F}{\bf P}^T)_{23}=({\bf F}{\bf P}^T)_{32},\quad ({\bf F}{\bf P}^T)_{31}=({\bf F}{\bf P}^T)_{13},\quad ({\bf F}{\bf P}^T)_{12}=({\bf F}{\bf P}^T)_{21}; \eex$$ 或等价地, $$\beex \bea ({\bf F}{\bf P}^T)^T&={\bf F}{\bf P}^T,\\ {\bf P}{\bf F}^T&={\bf F}{\bf P}^T,\\ {\bf P}&={\bf F}{\bf P}^T{\bf F}^{-T},\\ {\bf F}^{-1}{\bf P}&=({\bf F}^{-1}{\bf P})^T,\\ {\bf \Sigma}&={\bf \Sigma}^T. \eea \eeex$$

 

时间: 2024-10-19 04:11:46

[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性的相关文章

[物理学与PDEs]第1章习题参考解答

[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势   [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势   [物理学与PDEs]第1章习题3 常场强下电势的定解问题   [物理学与PDEs]第1章习题4 偶极子的极限电势   [物理学与PDEs]第1章习题5 偶极子的电场强度   [物理学与PDEs]第1章习题6 无限长载流直线的磁场   [物理学与PDEs]第1章习题7 载流线圈的磁场   [物理学与PDEs]第1章习题8 磁场分布 $\ra$ 电流分布    [物理

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8

[物理学与PDEs]第4章习题参考解答

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

[物理学与PDEs]第3章习题参考解答

[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程   [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构   [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构   [物理学与PDEs]

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p

[物理学与PDEs]第1章习题5 偶极子的电场强度

试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{r_{P_0P}^3}{\bf r}_{P_0P}+\cfrac{q}{r_{P_1P}^3}{\bf r}_{P_1P}}\\ &=\cfrac{q}{4\pi \ve_0} \sez{ \sex{-\cfrac{1}{r_{P_0P}^3}+\cfrac{1}{r_{P_0P}^3}}{\bf r

[物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2. 32) 可写为如下的形式: $$\bex \cfrac{\p {\bf A}}{\p t}={\bf u}\times\rot{\bf A}+\cfrac{1}{\sigma\mu_0}\lap{\bf A}.

[物理学与PDEs]第2章习题5 正应力的平均值

设流场中流体的应力张量为 ${\bf P}=(p_{ij})$. 试证明: 在以某点为中心, $r$ 为半径的球面 $S_r$ 上的法向应力分量的平均值, 在 $r\to 0$ 时的极限为该点正应力的平均值, 即成立 $$\bex \lim_{r\to 0}\cfrac{1}{4\pi r^2}\int_{S_r}{\bf p}_n\cdot{\bf n}\rd S =\cfrac{1}{3}(p_{11}+p_{22}+p_{33}), \eex$$ 其中 ${\bf p}_n$ 由 (2.

[物理学与PDEs]第1章习题6 无限长载流直线的磁场

试计算电流强度为 $I$ 的无限长的直导线所产生的磁场的磁感强度.   解答: 设 $P$ 到直线的距离为 $r$, 垂足为 $P_0$, 则 ${\bf B}(P)$ 的方向为 ${\bf I}\times {\bf r}_{P_0P}$, 大小为 $$\beex \bea {\bf B}(P)&=\cfrac{\mu_0}{4\pi}\int_{-\infty}^{+\infty} \cfrac{|I\rd{\bf x}\times{\bf r}_{xP}|}{r_{xP}^3}\\ &