Linux TTY驱动--Uart_driver底层【转】

转自:http://blog.csdn.net/sharecode/article/details/9196591

版权声明:本文为博主原创文章,未经博主允许不得转载。

Linux 中将串口驱动进行了分层,如图:

本节讲解与底层硬件密切相关的层,以S3C2440为例剖析:

    实现文件有:/drivers/serial/samsung.c    /drivers/serial/samsung.h      /drivers/serial/s3c2440.c (kernel 2.6.28),Serial Core层在/drivers/serial/serial_core.c主要文件中。

    硬件驱动层与Serial-Core沟通数据结构如下:

1. uart_driver包含了串口设备名、串口驱动名、主次设备号、串口控制台(可选)等信息,还封装了tty_driver(底层串口驱动无需关心tty_driver)。

    

struct uart_driver {
struct module *owner;/* 拥有该uart_driver的模块,一般为THIS_MODULE */
constchar*driver_name;/* 串口驱动名,串口设备文件名以驱动名为基础 */
constchar*dev_name;/* 串口设备名 */
int major;/* 主设备号 */
int minor;/* 次设备号 */
int nr;/* 该uart_driver支持的串口个数(最大) */
struct console *cons;/* 其对应的console.若该uart_driver支持serial console,否则为NULL */

/*
* these are private; the low level driver should not
* touch these; they should be initialised to NULL
*/
struct uart_state *state;
struct tty_driver *tty_driver;     
};

 

2. uart_port用于描述串口端口的I/O端口或I/O内存地址、FIFO大小、端口类型、串口时钟等信息。实际上,一个uart_port实例对应一个串口设备。

struct uart_port {
spinlock_t lock;/* 串口端口锁 */
unsignedint iobase;/* IO端口基地址 */
unsignedchar __iomem *membase;/* IO内存基地址,经映射(如ioremap)后的IO内存虚拟基地址 */
unsignedint irq;/* 中断号 */
unsignedint uartclk;/* 串口时钟 */
unsignedint fifosize;/* 串口FIFO缓冲大小 */
unsignedchar x_char;/* xon/xoff字符 */
unsignedchar regshift;/* 寄存器位移 */
unsignedchar iotype;/* IO访问方式 */
unsignedchar unused1;

#define UPIO_PORT (0)/* IO端口 */
#define UPIO_HUB6 (1)
#define UPIO_MEM (2)/* IO内存 */
#define UPIO_MEM32 (3)
#define UPIO_AU (4)/* Au1x00 type IO */
#define UPIO_TSI (5)/* Tsi108/109 type IO */
#define UPIO_DWAPB (6)/* DesignWare APB UART */
#define UPIO_RM9000 (7)/* RM9000 type IO */

unsignedint read_status_mask;/* 关心的Rx error status */
unsignedint ignore_status_mask;/* 忽略的Rx error status */
struct uart_info *info;        //重要,见下面
struct uart_icount  icount;   /* 计数器 uart_icount为串口信息计数器,包含了发送字符计数、接收字符计数等。在串口的发送中断处理函数和接收中断处理函数中,我们需要管理这些计数。*/ 

struct console *cons;/* console结构体 */
#ifdefCONFIG_SERIAL_CORE_CONSOLE
unsignedlong sysrq;/* sysrq timeout */
#endif

upf_t flags;

#define UPF_FOURPORT ((__forceupf_t)(1 << 1))
#define UPF_SAK ((__forceupf_t)(1 << 2))
#define UPF_SPD_MASK ((__forceupf_t)(0x1030))
#define UPF_SPD_HI ((__forceupf_t)(0x0010))
#define UPF_SPD_VHI ((__forceupf_t)(0x0020))
#define UPF_SPD_CUST ((__forceupf_t)(0x0030))
#define UPF_SPD_SHI ((__forceupf_t)(0x1000))
#define UPF_SPD_WARP ((__forceupf_t)(0x1010))
#define UPF_SKIP_TEST ((__forceupf_t)(1 << 6))
#define UPF_AUTO_IRQ ((__forceupf_t)(1 << 7))
#define UPF_HARDPPS_CD ((__forceupf_t)(1 << 11))
#define UPF_LOW_LATENCY ((__forceupf_t)(1 << 13))
#define UPF_BUGGY_UART ((__forceupf_t)(1 << 14))
#define UPF_MAGIC_MULTIPLIER((__force upf_t)(1 << 16))
#define UPF_CONS_FLOW ((__forceupf_t)(1 << 23))
#define UPF_SHARE_IRQ ((__forceupf_t)(1 << 24))
#define UPF_BOOT_AUTOCONF ((__forceupf_t)(1 << 28))
#define UPF_FIXED_PORT ((__forceupf_t)(1 << 29))
#define UPF_DEAD ((__forceupf_t)(1 << 30))
#define UPF_IOREMAP ((__forceupf_t)(1 << 31))

#define UPF_CHANGE_MASK ((__forceupf_t)(0x17fff))
#define UPF_USR_MASK ((__forceupf_t)(UPF_SPD_MASK|UPF_LOW_LATENCY))

unsigned int mctrl;/* 当前的moden设置 */
unsigned int timeout;/* character-based timeout */
unsigned int type;/* 端口类型 */
const struct uart_ops *ops;/* 串口端口操作函数集 */
unsigned int custom_divisor;
unsigned int  line;/* 端口索引 */
resource_size_t mapbase;/* IO内存物理基地址,可用于ioremap */
struct device *dev;/* 父设备 */
unsigned char hub6;/* this should be in the 8250 driver */
unsigned char suspended;
unsigned char unused[2];
void*private_data;/* 端口私有数据,一般为platform数据指针 */
};

 

(1) Uart_struct uart_icount {
__u32 cts;
__u32 dsr;
__u32 rng;
__u32 dcd;
__u32 rx;/* 发送字符计数 */
__u32 tx;/* 接受字符计数 */
__u32 frame;/* 帧错误计数 */
__u32 overrun;/* Rx FIFO溢出计数 */
__u32 parity; /* 帧校验错误计数 */
__u32 brk; /* break计数 */
__u32 buf_overrun;
};

    uart_info有两个成员在底层串口驱动会用到:xmit和tty。用户空间程序通过串口发送数据时,上层驱动将用户数据保存在xmit;而串口发送中断处理函数就是通过xmit获取到用户数据并将它们发送出去。串口接收中断处理函数需要通过tty将接收到的数据传递给行规则层

struct uart_info {
struct tty_struct *tty;   //接受
struct circ_buf xmit;    //发送
uif_t flags;

/*
* Definitions for info->flags. These are _private_ to serial_core,and
* are specific to this structure. They may be queried by low leveldrivers.
*/
#define UIF_CHECK_CD ((__force uif_t)(1 << 25))
#define UIF_CTS_FLOW ((__force uif_t)(1 << 26))
#define UIF_NORMAL_ACTIVE ((__force uif_t)(1 << 29))
#define UIF_INITIALIZED ((__force uif_t)(1 << 31))
#define UIF_SUSPENDED ((__force uif_t)(1 << 30))

int blocked_open;

struct tasklet_struct tlet;    //上层驱动任务等待队列的

wait_queue_head_t open_wait;
wait_queue_head_t delta_msr_wait;
};

3. Uart_port中有一个重要的uart_ops,底层硬件需要实现:

struct uart_ops {
unsignedint(*tx_empty)(struct uart_port *); /* 串口的Tx FIFO缓存是否为空 */
void(*set_mctrl)(struct uart_port *,unsignedint mctrl);/* 设置串口modem控制 */
unsignedint(*get_mctrl)(struct uart_port *);/* 获取串口modem控制 */
void(*stop_tx)(struct uart_port *);/* 禁止串口发送数据 */
void(*start_tx)(struct uart_port *);/* 使能串口发送数据 */
void(*send_xchar)(struct uart_port *,char ch);/* 发送xChar */
void(*stop_rx)(struct uart_port *);/* 禁止串口接收数据 */
void(*enable_ms)(struct uart_port *);/* 使能modem的状态信号 */
void(*break_ctl)(struct uart_port *,int ctl);/* 设置break信号 */
int(*startup)(struct uart_port *);/* 启动串口,应用程序打开串口设备文件时,该函数会被调用 */
void(*shutdown)(struct uart_port *);/* 关闭串口,应用程序关闭串口设备文件时,该函数会被调用 */
void(*set_termios)(struct uart_port *,struct ktermios *new,struct ktermios *old);/* 设置串口参数 */
void(*pm)(struct uart_port *,unsignedint state,
unsignedint oldstate);/* 串口电源管理 */
int(*set_wake)(struct uart_port *,unsignedint state);/* */
constchar*(*type)(struct uart_port *);/* 返回一描述串口类型的字符串 */
void(*release_port)(struct uart_port *);/* 释放串口已申请的IO端口/IO内存资源,必要时还需iounmap */
int(*request_port)(struct uart_port *);/* 申请必要的IO端口/IO内存资源,必要时还可以重新映射串口端口 */
void(*config_port)(struct uart_port *,int);/* 执行串口所需的自动配置 */
int(*verify_port)(struct uart_port *,struct serial_struct *);/* 核实新串口的信息 */
int(*ioctl)(struct uart_port *,unsignedint,unsignedlong);/* IO控制 */
};

4. uart_driver通过Serial Core层的

int uart_register_driver(struct uart_driver *drv)

向Core注册,通过int uart_add_one_port(struct uart_driver *drv,struct uart_port *port)向该驱动添加uart_port。

Serial Core层还导出如下函数共上层或下层调用:

EXPORT_SYMBOL(uart_match_port);   //判断两个uart_port是否相等

EXPORT_SYMBOL(uart_write_wakeup);    //该函数常在中断处理函数中调用用来唤醒上层因向串口端口写数据而阻塞的进程

EXPORT_SYMBOL(uart_register_driver);  //已解释
EXPORT_SYMBOL(uart_unregister_driver);
EXPORT_SYMBOL(uart_suspend_port);   //用于挂起特定的串口端口
EXPORT_SYMBOL(uart_resume_port);
EXPORT_SYMBOL(uart_add_one_port);   //已解释
EXPORT_SYMBOL(uart_remove_one_port);

具体实现请参照/drivers/serial/samsung.c  /drivers/serial/s3c2440.c

下一节重点介绍Serial Core层 

时间: 2024-09-24 15:58:48

Linux TTY驱动--Uart_driver底层【转】的相关文章

Linux TTY驱动--Serial Core层【转】

转自:http://blog.csdn.net/sharecode/article/details/9197567 版权声明:本文为博主原创文章,未经博主允许不得转载. 接上一节: Linux TTY驱动--Uart_driver底层 一. 为了给USB-Serial类型的串口打基础(USB-Serial和Serial Core一样,构造了一个tty_driver和tty_operations,叫做usb-serial层),这里仔细分析Serial Core层完成的工作,实现代码为/driver

linux串口驱动分析【转】

转自:http://blog.csdn.net/hanmengaidudu/article/details/11946591 硬件资源及描述           s3c2440A 通用异步接收器和发送器(UART)提供了三个独立的异步串行 I/O(SIO)端口,每个端口都可以在中断模式或 DMA 模式下操作.UART 使用系统时钟可以支持最高 115.2Kbps 的波特率.每个 UART 通道对于接收器和发送器包括了 2 个 64 位的 FIFO. 寄存器 名称 地址 在linux中的描述 (2

linux 串口驱动(二)初始化 【转】

转自:http://blog.chinaunix.net/uid-27717694-id-3493611.html 8250串口的初始化: (1)定义uart_driver.uart_ops.uart_port等结构体的实例并在适当的地方更具具体的硬件驱动情况初始化他们,当然具体设备xxx的驱动可以将这些结构体套在新定义的xxx_uart_driver.xxx_uart_ops.xxx_uart_port之内. (2)在模块初始化调用uart_register()和uart_add_one_po

设备驱动程序-请问C语言可以完全代替汇编去写驱动之类底层的东西吗?

问题描述 请问C语言可以完全代替汇编去写驱动之类底层的东西吗? 请问C语言可以完全代替汇编去写驱动之类底层的东西吗?还是说汇编无论如何都不可能被取代呢? 解决方案 与硬件交流越直接,代码的执行效率一般越高,汇编可以直接操纵CPU的寄存器,内存地址,硬件操作,但是编写效率比较低,C语言和汇编离得很近,一般都是采用c来加速开发,有些地方c实现达不到理想效果,于是就穿插汇编代码....另外弄清楚一件事,语言没有替代不替代的,只能说某种语言不再流行了,各种语言都有自己擅长的领域,在合适的领域选择合适的语

Linux Framebuffer驱动剖析之一—软件需求

嵌入式企鹅圈将以本文作为2015年的终结篇,以回应第一篇<Linux字符设备驱动剖析>.嵌入式企鹅圈一直专注于嵌入式Linux和物联网IOT两方面的原创技术分享,稍后会发布嵌入式企鹅圈的2015年的年终总结和2016年的分享计划.        本系列文章将分析Linux Framebuffer驱动的作用(需求).框架.接口实现和使用.按笔者一直倡导的Linux学习理念-从软件需求的角度去理解Linux,对于Linux各个子系统,我们首先要理解其软件需求,从中自然会清楚其存在的价值和作用:接下

Linux Framebuffer驱动剖析之二—驱动框架、接口实现和使用

本文继上一篇文章<Linux Framebuffer驱动剖析之一-软件需求>,深入分析LinuxFramebuffer子系统的驱动框架.接口实现和使用. 一.LinuxFramebuffer的软件需求 上一篇文章详细阐述了LinuxFramebuffer的软件需求(请先理解第一篇文章再来阅读本篇文章),总结如下: 1. 针对SOC的LCD控制寄存器进行编程,以支持不同的LCD屏,以使该SOC的应用场景最大化.这是硬件平台相关的需求.其对应Linux源码路径arch\arm\mach-s5pv2

《Linux设备驱动开发详解 A》一一1.1 设备驱动的作用

1.1 设备驱动的作用 任何一个计算机系统的运转都是系统中软硬件共同努力的结果,没有硬件的软件是空中楼阁,而没有软件的硬件则只是一堆废铁.硬件是底层基础,是所有软件得以运行的平台,代码最终会落实为硬件上的组合逻辑与时序逻辑:软件则实现了具体应用,它按照各种不同的业务需求而设计,并完成用户的最终诉求.硬件较固定,软件则很灵活,可以适应各种复杂多变的应用.因此,计算机系统的软硬件相互成就了对方.但是,软硬件之间同样存在着悖论,那就是软件和硬件不应该互相渗透入对方的领地.为尽可能快速地完成设计,应用软

LDD3学习笔记(21):tty驱动

  #include <linux/tty_driver.h> 头文件, 包含 struct tty_driver 的定义和声明一些在这个结构中的不同的标志. #include <linux/tty.h> 头文件, 包含 tty_struct 结构的定义和几个不同的宏定义来易于存取 struct termios 的成员的单个值. 它还含有 tty 驱动核心的函数声明. #include <linux/tty_flip.h> 头文件, 包含几个 tty flip 缓冲内联

Linux主机驱动与外设驱动分离思想

1主机.外设驱动分离的意义 在Linux设备驱动框架的设计中,除了有分层设计实现以外,还有分隔的思想.举一个简单的例子,假设我们要通过SPI总线访问某外设,在这个访问过程中,要通过操作CPU XXX上的SPI控制器的寄存器来达到访问SPI外设YYY的目的,最简单的方法是: return_type xxx_write_spi_yyy(...) { xxx_write_spi_host_ctrl_reg(ctrl); xxx_ write_spi_host_data_reg(buf); while(