《大数据分析原理与实践》一一3.3 相关分析

3.3 相关分析
相关关系是一种非确定性的关系,例如,以X和Y分别表示一个人的身高和体重,或分别表示每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。在一些问题中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关关系。典型相关分析就是研究两组变量之间相关程度的一种多元统计分析方法。
典型相关分析是研究两组变量之间相关关系的一种统计分析方法。为了研究两组变量X1,X2,…,Xp和Y1,Y2,…,Yq之间的相关关系,采用类似于主成分分析(将在9.2节中介绍)的方法,在两组变量中,分别选取若干有代表性的变量组成有代表性的综合指数,通过研究这两组变量之间的相关关系,来代替这两组变量之间的相关关系,这些综合指数称为典型变量。
其基本思想是,首先在每组变量中找到变量的线性组合,使得两组线性组合之间具有最大的相关系数。然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此继续下去,直到两组变量之间的相关性被提取完毕为止。被选取的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。典型相关系数度量了这两组变量之间联系的强度。

我们用一个例子说明相关分析。为了研究家庭特征与家庭消费之间的关系,调查了70个家庭的下面两组变量之间的关系,见表3-6~表3-10。
x1:每年去餐馆就餐的频率,x2:每年外出看电影的频率。
y1:户主的年龄,y2:家庭的年收入,y3:户主受教育程度。
U1=0.7689x1+0.2721x2 V1=0.0491y1+0.8975y2+0.1900y3
U2=-1.4787x1+1.6443x2 V2=1.0003y1-0.5837y2+0.2956y3
两个反映消费的指标与第一对典型变量中U1的相关系数分别为0.9866和0.8872,可以看出U1可以作为消费特性的指标,第一对典型变量中V1与y2之间的相关系数为0.9822,可见典型变量V1主要代表了家庭收入,U1和V1的相关系数为0.6879,这就说明家庭的消费与一个家庭的收入之间关系是很密切的;第二对典型变量中U2和x2的相关系数为0.4614,可以看出U2可以作为文化消费特性的指标,第二对典型变量中V2与y1和y3之间的相关系数分别为0.8464和0.3013,可见典型变量V2主要代表了家庭成员的年龄特征和教育程度,U2和V2的相关系数是0.1869,说明文化程度与年龄和受教育程度之间的相关性。

基于阿里云的相关分析
下面我们用一个例子来说明如何基于阿里云平台进行相关分析。
Center for World University Rankings组织对全世界大部分大学进行了排名,其排名根据教育质量、教师质量、毕业生就业情况、出版刊物数量等一系列指标进行评分。我们获取该数据集并对其中的特征进行相关分析,从而了解每个特征之间的关系。前10条数据以及部分特征如表3-10所示。

我们想要计算出数值型特征之间的相关关系,首先进行数据导入。新建项目,自定义表名cwurdata,在“添加字段页面”添加相应的字段及字段类型(一旦表建成,字段名及字段类型不可变。此后的字段信息设置均参考此处),如图3-17所示。
建表成功后,在阿里云大数据开发平台“数据开发”层级下,单击“更多功能”按钮, 选择“导入本地数据”(注意:本地数据中字段值内不能含有分隔符,阿里云平台无法智能识别)如图3-18所示。

图3-17 添加字段及字段类型

图3-18 本地数据导入
若本地数据文件中的字段与表中字段不匹配,需手动进行字段匹配,如图3-19所示。
最后提示导入成功。
其分析组件布局如图3-20所示。其中,在相关系数矩阵组件中选择想要进行相关系数计算的列。设置完毕后,运行组件。运行成功后,在相关系数矩阵组件上右击,选择“查看数据”得到相关系数矩阵,如图3-21所示。
从结果数据可以看出,学校得分与教师质量最为相关,教育质量与教师质量最为相关,毕业生就业情况与教育质量最为相关,影响力与出版刊物数量最为相关。

图3-19 字段匹配

图3-21 相关系数矩阵

时间: 2024-09-23 08:36:10

《大数据分析原理与实践》一一3.3 相关分析的相关文章

《大数据分析原理与实践》一一1.4 大数据分析的过程、技术与难点

1.4 大数据分析的过程.技术与难点 1.大数据分析的过程 大数据分析的过程大致分为下面6个步骤: (1)业务理解 最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将业务知识转化为数据分析问题的定义和实现目标的初步计划上. (2)数据理解 数据理解阶段从初始的数据收集开始,通过一些活动的处理,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起兴趣的子集去形成隐含信息的假设. (3)数据准备 数据准备阶段包括从未处理数据中构造最终数据集的所有活动.这些数据将是模型工具

《大数据分析原理与实践》一一2.3 推断统计

2.3 推断统计推断统计是研究如何利用样本数据来推断总体特征的统计方法,其目的是利用问题的基本假定及包含在观测数据中的信息,做出尽量精确和可靠的结论.基本特征是其依据的条件中包含带随机性的观测数据.以随机现象为研究对象的概率论是统计推断的理论基础.它包含两个内容:参数估计,即利用样本信息推断总体特征,例如某一群人的视力构成一个总体,通常认为视力是服从正态分布的,但不知道这个总体的均值,随机抽部分人,测得视力的值,用这些数据来估计这群人的平均视力:假设检验,即利用样本信息判断对总体的假设是否成立.

《大数据分析原理与实践》一一1.5 全书概览

1.5 全书概览 本书将较为全面地描述大数据分析的模型.技术.实现与应用.其中第2-7章介绍大数据分析模型,包括关联分析模型.分类分析模型.聚类分析模型.结构分析模型和文本分析模型:第8-11章介绍大数据分析相关的技术,包括大数据预处理.特征选择和降维方法.面向大数据的数据仓库和大数据分析算法.第12-14章介绍三种用于实现大数据分析算法的平台,分别是大数据计算平台.流式计算平台和大图计算平台:第15-16章介绍两类大数据分析的具体应用,分别讲述社会网络和推荐系统. 第2章是大数据分析建模的基础

《大数据分析原理与实践》一一1.3 什么是大数据分析

1.3 什么是大数据分析 1.大数据分析的定义 数据分析指的是用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程. 数据分析可以分为三个层次,即描述分析.预测分析和规范分析. 描述分析是探索历史数据并描述发生了什么,这一层次包括发现数据规律的聚类.相关规则挖掘.模式发现和描述数据规律的可视化分析. 预测分析用于预测未来的概率和趋势,例如基于逻辑回归的预测.基于分类器的预测等. 规范分析根据期望的结果.特定场景.资源以及对过去和当前事件的了解

《大数据分析原理与实践》一一2.1 大数据分析模型建立方法

2.1 大数据分析模型建立方法 大数据分析模型可以基于传统数据分析方法中的建模方法建立,也可以采取面向大数据的独特方法来建立.为了区分这两种模型建立方法,我们分别简称其为传统建模方法和大数据建模方法.由于这两种模型建立方法存在一些交集(如业务调研.结果校验等),我们采取统一框架来进行介绍,在介绍时区分两种建模方法的不同之处.传统数据分析建模方法与大数据分析建模方法从大数据这个概念提出开始,就有"大数据分析方法与传统数据分析方法同与异"之辩.有的观点认为,传统分析是"因果分析&

《大数据分析原理与实践》一一3.4 小结

3.4 小结关联分析模型用于描述多个变量之间的关联,这是大数据分析的一种重要模型,本章主要探讨了回归分析.关联规则分析和相关分析这三类关联分析.3.1节介绍了回归分析模型,即描述一个或多个变量与其余变量的依赖关系,包括其基本定义和数学模型,并介绍了回归分析的基本计算方法和模型检验,紧接着介绍了回归模型的拓展,包括多项式回归.GBDT回归和XGBOOST回归,并且简要介绍了"回归大家族",让读者对于整个回归问题有了全面的了解.3.2节讲述了关联规则分析模型,即查找存在于项目集合或对象集合

《大数据分析原理与实践》一一第2章 大数据分析模型

第2章 大数据分析模型 大数据分析模型讨论的问题是从大数据中发现什么.尽管对大数据的分析方法林林总总,但面对一项具体应用,大数据分析非常依赖想象力.例如,对患者进行智能导诊,为患者选择合适的医院.合适的科室和合适的医生.可以通过患者对病症的描述建立模型而选择合适的科室:可以基于对患者位置.医院擅长病症的信息以及患者病症的紧急程度建立模型而确定位置合适的医院:还可以根据医院当前的队列信息建立模型进行推荐,如果队列较长则显示已挂号人数较少.等待时间较短的医生资料,如果队列较短则显示那些挂号费和治疗费

《大数据分析原理与实践》一一

3.3 相关分析 相关关系是一种非确定性的关系,例如,以X和Y分别表示一个人的身高和体重,或分别表示每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系.在一些问题中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关关系.典型相关分析就是研究两组变量之间相关程度的一种多元统计分析方法.典型相关分析是研究两组变量之间相关关系的一种统计分析方法.为了研究两组变量X1,X2,-,Xp和

《大数据分析原理与实践》——1.4 大数据分析的过程、技术与难点

1.4 大数据分析的过程.技术与难点 1.大数据分析的过程 大数据分析的过程大致分为下面6个步骤: (1)业务理解 最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将业务知识转化为数据分析问题的定义和实现目标的初步计划上. (2)数据理解 数据理解阶段从初始的数据收集开始,通过一些活动的处理,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起兴趣的子集去形成隐含信息的假设. (3)数据准备 数据准备阶段包括从未处理数据中构造最终数据集的所有活动.这些数据将是模型工具

《大数据分析原理与实践》——导读

前 言 本书的缘起与成书过程 大数据经过分析能够产生高价值,这无疑已在大数据火爆的今天成为共识,从而使得大数据分析在"大数据+"涉及的领域(如工业.医疗.农业.教育等)有了广泛的应用.大数据分析的相关知识不仅是大数据行业的从业人员应该必备的,也是和大数据相关的各行各业的从业者需要了解的. 然而,人们对大数据分析的解读有多个不同方面.从"分析"的角度解读,大数据分析可以看作统计分析的延伸:从 "数据"的角度解读,大数据分析可以看作数据管理与挖掘的扩