Incremental Data Processing based on MapReduce

Incremental Data Processing based on MapReduce

Cairong Yan  Xin Yang  Ze Yu  Min Li  Xiaolin Li

IncMR framework is proposed in this paper for incrementally processing new data of a large data set

Keywords:MapReduce,Incrementaldataprocessing,State,Data locality,Compatible   

temp_12072910065133.pdf

时间: 2024-10-25 10:18:07

Incremental Data Processing based on MapReduce的相关文章

[文档]The WAMS Power Data Processing based on Hadoop

The WAMS Power Data Processing based on Hadoop Zhaoyang Qu , Shilin Zhang For massive WAMS data, this paper used the MapReduce to make parallel data ETL operations for several files, used MapReduce to to improve Apriori algorithm for improve the effi

Data Processing with SMACK: Spark, Mesos, Akka, Cassandra, and Kafka

Data Processing with SMACK: Spark, Mesos, Akka, Cassandra, and Kafka This article introduces the SMACK (Spark, Mesos, Akka, Cassandra, and Kafka) stack and illustrates how you can use it to build scalable data processing platforms While the SMACK sta

[文档]Big Data Processing in Cloud Envirments

Big Data Processing in Cloud Envirments temp_12050708018902.pdf

Parallel Feature Selection Based on MapReduce

Parallel Feature Selection Based on MapReduce Zhanquan Sun In this paper, a parallel feature selection method based on MapReduce model is proposed. Large-scale dataset is partitioned into sub-datasets. Feature selection is operated on each computatio

[文档]Big Data Processing using Apache Hadoop

Big Data Processing using Apache Hadoop 探讨云计算系统下使用Hadoop进行大数据处理 [下载地址]http://bbs.chinacloud.cn/showtopic-11793.aspx

In-Stream Big Data Processing译文:流式大数据处理

转自:http://blog.csdn.net/idontwantobe/article/details/25938511  @猪头饼 原文:http://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/ 作者:Ilya Katsov 相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twi

In-Stream Big Data Processing流式大数据处理详解

相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yahoo S4,Cloudera Impala,Apache Spark和Apache Tez纷纷加入大数据和NoSQL阵营.本文尝试探讨流式处理系统用到的技术,分析它们与大规模批量处理和OLTP/OLAP数据库的关系,并探索一个统一的查询引擎如何才能同时支持流式.批量和OLAP处理. 在Grid Dy

数据处理不等式:Data Processing Inequality

  我是在差分隐私下看到的,新解决方案的可用性肯定小于原有解决方案的可用性,也就是说信息的后续处理只会降低所拥有的信息量.   那么如果这么说的话为什么还要做特征工程呢,这是因为该不等式有一个巨大的前提就是数据处理方法无比的强大,比如很多的样本要分类,我们做特征提取后,SVM效果很好 ,但是如果用DNN之类的CNN.AuToEncoder,那么效果反而不如原来特征.这样就能理解了,DNN提取能力更强,那么原始就要有更多的信息,在新特征下无论怎么提取,信息就那么多.   信息量越多越好么?肯定不是

Breakthrough in Alibaba Cloud Computing Capabilities - BigBench Reaches 100 TB World Record

In the first day of the 2017 Hangzhou Computing Conference on Oct. 11, Alibaba Cloud President Hu Xiaoming introduced a next-generation computing platform MaxCompute + PAI. In the main forum on the 12th, Zhou Jingren, Alibaba Group Vice President and