数据化运营7大经典思路

1. 分解思路

做互联网运营的数据分析,首先就是学会“分解”。将数据分解,将问题分解。所有的数据都可以层层向下分解,找出更多的“子数据”,通过对子数据的挖掘和优化,往往能逐个击破,找到方向,提升最后的“关键指标”。这个重要的思路也贯穿了本文章下面几乎所有的内容。很多时候我们找不到努力的方向,往往是分解的能力还不够,只盯着最后大的成交额指标不放,不去挖掘这个指标下面的相关因素,而这些因素就是所谓的细节,做好了,就成为“极致”。

分解思路还有一个好处是可以帮助运营更好的分工,进行组织架构的优化调整。使员工更专业,更聚焦到某一块业务上,从而培养出一个细分职能的专家,当每个细分职能都有专家时,又会反应在运营细节的完美上。

2. 追踪思路

运营的问题,是追踪出来的,不是一次就看出来的。所有的数据都是靠积累和沉淀才能发现问题,单一的数字没有任何意义,只能称为 “数值”。比如一个店铺今天的流量是2000,转化率1.5%,成交额3000 ,好还是不好,进步还是退步了,不知道。只有放到近1周,近1个月,甚至是近1年的数据中,组成线性的趋势去研究,才能找到“问题”,这个时候的数据才是有意义的。

所以,无论到哪一个阶段的店铺,都要养成一个每日积累数据的习惯,我们知道淘宝后台会有成熟的数据产品,会给你看一个趋势和历史数据,但这个远远不够,需要把所有数据都摘录到自己的数据库中,结合不同数据维度去综合分析问题,建立追踪机制,也就是下面讲的“结合思路”。中型以上的电商都会有一套自己的数据管理模式,对重点指标进行监控,以保证及时定位到问题作出相应决策。

比如下方某电商用FineReport搭建的数据决策系统。

3. 结合思路

单独追踪一个数据的会比较“片面”,得出结论甚至是错误的。因为所有电商的核心数据在一段时间内,具备偶然性和关联性的。

偶然性是指,可能某一天,转化率突然降低,比日常要低很多,这个是非常可能发生的。于是,所有人都惊慌失措,找到转化率相关的因素,看产品详情页的设计,产品的价格,找客服聊天记录,“优化了”整整1天详情页的设计,使产品价格更低了,售前客服被整顿了。最后发现一切照旧,还浪费了1天时间做了很多无用的工作。

关联性是指,大部分指标都是具有关联性,正相关或者负相关,转化率突然的降低,最后发现是在昨天流量突然暴涨,再看看流量来源,大部分来自于推广流量,不精准,但人多。

所以,追踪数据一定是多个维度一起看的,一般来说,转化率和流量是负相关的,流量暴涨,转化率就会下降;转化率上升,客单价就会下降。(大型促销活动除外)

但是,追踪了数据,多个维度结合了来分析数据,结论依然可能会不准确,原因在于,这2个思路都是在和“自己比”,我们还需要进行“与其他人对比”。这就是下面介绍的“对比思路”。

4. 对比思路

对比就是和其他人比。这个其他人一定要选择“合适的”。可以是与自己品牌定位相似的店铺数据,也可以是同行业中做的比较好的店铺数据。最具有可比性的还是跟自己“同层级”店铺。通过对比,才能发现自己差距到底在哪,找到优化的正确方向。

实际案例,之前做微波炉产品,销售量一直不如竞争品牌—格兰仕,然后去分析数据发现流量差很多。于是加大了展示类(钻石展位,CPM)和竞价类(直通车,CPC)广告的投入,却发现收效甚微,甚至牺牲了大部分利润。最后我们拿着同类型的一个产品,做了深度对比分析,发现流量来源中,自然搜索相差比较大,才发现是品牌认知的问题。于是推动品牌商着重于对产品品牌的打造。

5. 节点思路

节点思路就是将大的营销事件作为节点单独标记,数据剔除出来单独进行分析。在日常运营中,营销活动对数据影响还是非常大的,尤其是突然参加了淘宝官方的活动,比如聚划算等,会让某几天的流量,转化率,成交额飙升,这个时候我们再将这些数据插入到日常运营数据分析中,就会引起“失真”,影响对店铺日常运营优化方向的判断。

6. 锚点思路

锚点思路有2层含义,第一个含义是在做业务数据分析中,当存在多个因子影响一个数据指标时,只留一个因子做变量,其他因子保持不变,然后测试这个因子对于最终指标影响的程度。比如,下面会讲到的转化率,有6个因子与之有关,但每个因子对于转化率的影响又不相同,这个时候,需要进行一个小测试,保持1个因子变动,其他5个不变,放到市场中实际销售,最终得出这个因子与转化率的具体影响关系,以便后续做更多优化。

第二层含义是产品竞争力层面。通过锚点策略可以让用户更快速的做决策,使产品销售的更好。比如,A和B两个店铺经营同一个品牌,这个品牌下面有1号和2号产品,这个时候,A店铺与B店铺沟通,A主力卖1号,B主力卖2号,这时,A可以把2号产品价格标高,以便帮助B店铺做价格“锚点”,让用户知道B店铺2号产品确实有价格优势,这样用户决策将加快。A店铺也同理。

7. 行为标记思路

行为标记法,就是将大动作的优化,大的项目上线及时标注在数据报表中。以便在后面通过数据检验是否是有效。因为大部分的优化导致的结果,都是“滞后”的,也就是说,一个大的优化动作,可能在1个月后才能体现出来效果,甚至是半年后才会有效果。当然,也有些优化动作是即时的,比如宝贝标题对于搜索结果的影响。无论怎样,在运营过程中我们要明确的知道,哪些事情是花费了大量时间有效的,哪些是无效的。

之前我们做产品包装优化,用了1个月与品牌商沟通,品牌商再通过各种测试,实验,采购新的包装材料,2个月后我们给用户发出的货就都是新包装的产品了。但是,在采用新包装产品1个月后,退货率只是缓慢下降,到第2个月后才明确的在财务表中提现,因破损造成的退货下降了很多,用户体验好了,再1个月后回购率也提升了。进而提升了整个店铺销量和好评率。

以上7种思路是数据分析基础,下面将落实到具体每个运营指标的优化,你将看到所有指标都被7种思路的某一种或某几种所贯穿。有了这样的分析思路,无论做哪一块内容,都将快速的找到核心问题,进而再找到解决问题的方法。

本文作者:hualalalalali

来源:51CTO

时间: 2024-10-28 08:26:42

数据化运营7大经典思路的相关文章

【大数据学习】数据化运营并不难?关键是这些技术你get了么?!

免费开通大数据服务:https://www.aliyun.com/product/odps 1月15日在北京举行了首次阿里云大数据合作伙伴深度培训,我司获邀参加,我和两名研发的同学又一次来到了阿里巴巴望京园区.  > 培训的第一部分内容.数加的介绍及应用 除了介绍性内容之外,还是有「干货」的,这个干货就是MaxCompute 的实践.MaxCompute原来叫做ODPS,www.aliyun.com/product/odps,是阿里整个大数据解决方案的基础. 上来,给我们讲了什么事数据分析,话

数据实践之美:32位大数据专家的方法、技术与思想. NO.1 数据化运营的方法论体系

NO.1 数据化运营的方法论体系 张子良 网名胖子哥,混迹IT十余载,好读书,不求甚解.经史子集,诸子百家,一样不通.唯喜老庄之道,凡事随心,顺天应时,无所苛求.术业有专攻,金融和互联网领域数据方向,数据架构.数据仓库.BI分析多有涉猎,所憾无一精通,唯有孜孜以求,继续践行. 从大数据,到互联网思维,有人迷失,有人觉醒,迷失者继续凌乱,而清醒者却开始探索其背后的本质.当喧嚣散去,山还是山,商业还是商业,本质未变,变的只是渠道和方法.互联网与大数据时代,如何回归商业的本质,数据化运营也许不是唯一的

腾讯刘胜义:大数据化运营黄金时期已经到来

腾讯http://www.aliyun.com/zixun/aggregation/13145.html">网络媒体事业群总裁刘胜义今日在2012腾讯智慧上海主题日上表示,大数据化运营的黄金时期已经到来,如何整合这些数据成为未来的关键任务. 刘胜义介绍说,社会化媒体的广泛应用带来海量,而有真正价值的数据.数字科技本身发展其实越来越深刻影响到营销的方法论,营销的效率,这个时候完全不是单纯的数字媒体化的年代. "我们处在数字科技的年代,关注科技的本质和科技的价值挖掘,我们感觉在未来营

数据挖掘与数据化运营实战

大数据技术丛书 数据挖掘与数据化运营实战:思路.方法.技巧与应用 卢辉 著 图书在版编目(CIP)数据 数据挖掘与数据化运营实战:思路.方法.技巧与应用 / 卢辉著.-北京:机械工业出版社,2013.6 (大数据技术丛书) ISBN 978-7-111-42650-9 I. 数- II. 卢- III. 数据采集 IV. TP274 中国版本图书馆CIP数据核字(2013)第111479号 版权所有·侵权必究 封底无防伪标均为盗版 本书法律顾问 北京市展达律师事务所     本书是目前有关数据挖

数据挖掘与数据化运营实战.导读

 本书是目前有关数据挖掘在数据化运营实践领域比较全面和系统的著作,也是诸多数据挖掘书籍中为数不多的穿插大量真实的实践应用案例和场景的著作,更是创造性地针对数据化运营中不同分析挖掘课题类型,推出一一对应的分析思路集锦和相应的分析技巧集成,为读者提供"菜单化"实战锦囊的著作.作者结合自己数据化运营实践中大量的项目经验,用通俗易懂的"非技术"语言和大量活泼生动的案例,围绕数据分析挖掘中的思路.方法.技巧与应用,全方位整理.总结.分享,帮助读者深刻领会和掌握"以业

六步搭建数据化运营知识体系

数据化运营的概念随着大数据时代的到来被炒得越来越火热,提到数据分析.数据运营让很多产品.运营新人觉得瞬间高大上很多.随着数据概念的火热,如增长黑客.GrowingIO等一系列的数据分析指导产品增长的书籍.产品变得越来越受人追捧.对于互联网行业来说,无论是产品经理还是运营,都需要具备一定的数据运营能力,本文将帮助没有数据化思维的小伙伴搭建基础的数据化运营体系. 本文会按照上图中的数据化运营业务流程进行分析,从明确目标.数据指标制定.数据获取.数据分析.形成策略.验证优化这六个方面来搭建数据化运营的

数据挖掘与数据化运营实战. 3.4 用户路径分析

3.4 用户路径分析 用户路径分析是互联网行业特有的分析专题,主要是分析用户在网页上流转的规律和特点,发现频繁访问的路径模式,这些路径的发现可以有很多业务用途,包括提炼特定用户群体的主流路径.网页设计的优化和改版.用户可能浏览的下一个页面的预测.特定群体的浏览特征等.从这些典型的用途示例中可以看到,数据化运营中的很多业务部门都需要应用用户路径分析,包括运营部门.产品设计部门(PD).用户体验设计部门(User Experience Design,UED)等. 路径分析所用的数据主要是Web服务器

从零开始,构建数据化运营体系

数据化运营是一个近年来兴起的概念,它在运营的基础上,提出了以数据驱动决策的口号. 在了解数据化运营前,运营们有没有过如下的问题: 不同渠道,效果究竟是好是坏? 活跃数下降了,到底是因为什么原因? 这次活动推广成效如何? 发布了版本,用户喜不喜欢? 我们总是说传播,传播到底有多大? 这是产品和运营每天每时每刻都会遇到的问题.数据化运营,实际以解决这些问题为根本.它从来不是BAT的专属,也不是大数据的独宠,每一家互联网公司,都有适合的数据运营土壤. 数据运营体系,是数据分析的集合与应用,也是数据先行

数据挖掘与数据化运营实战. 2.2 统计分析与数据挖掘的主要区别

2.2 统计分析与数据挖掘的主要区别 统计分析与数据挖掘有什么区别呢?从实践应用和商业实战的角度来看,这个问题并没有很大的意义,正如"不管白猫还是黑猫,抓住老鼠才是好猫"一样,在企业的商业实战中,数据分析师分析问题.解决问题时,首先考虑的是思路,其次才会对与思路匹配的分析挖掘技术进行筛选,而不是先考虑到底是用统计技术还是用数据挖掘技术来解决这个问题. 从两者的理论来源来看,它们在很多情况下都是同根同源的.比如,在属于典型的数据挖掘技术的决策树里,CART.CHAID等理论和方法都是基于