如果你一直关注数据科学/机器学习,你就不能错过深度学习和神经网络的热潮。互联网公司正在寻找这方面的人,而且从竞赛到开源项目,都有巨额奖金。
如果你对深度学习所提供的前景感到兴奋,但是还没有开始,在这里或许是你开始的第一步。
在这篇文章中,我将介绍TensorFlow。阅读本文后,你将能够理解神经网络的应用,并使用TensorFlow解决现实生活中的问题,本文中的代码是用Python编写的,Python最近的火爆也和深度学习有关。
何时使用神经网络?
有关神经网络和深度学习的更详细的解释, 请看这里。其“更深”版本正在图像识别,语音和自然语言处理等诸多领域取得巨大突破。
现在的主要问题是何时使用神经网络?关于这点,你必须记住一些事情:
神经网络需要大量的信息数据来训练
将神经网络想象成一个孩子。它首先观察父母如何走路。然后它才会独立行走,并且每走一步,孩子都会学习如何执行特定的任务。如果你不让它走,它可能永远不会学习如何走路。你可以提供给孩子的“数据”越多,效果就越好。
当你有适当类型的神经网络来解决问题时
每个问题都有自己的难点。数据决定了你解决问题的方式。例如,如果问题是序列生成,递归神经网络更适合,而如果它是一个图像相关的问题,你可能会采取卷积神经网络。
硬件要求对于运行深度神经网络模型是至关重要的
神经网络很早以前就被“发现”了,但是近年来,神经网络一直在发光,这是因为计算能力的强大。如果你想用这些网络解决现实生活中的问题,准备购买一些高性能硬件吧!
如何解决神经网络问题
神经网络是一种特殊类型的机器学习(ML)算法。因此,与每个ML算法一样,它遵循数据预处理,模型构建和模型评估等常规ML工作流程。我列出了一个如何处理神经网络问题的待办事项清单:
- 检查神经网络是否可以提升传统算法。
- 做一个调查,哪个神经网络架构最适合即将解决的问题。
- 通过你选择的语言/库来定义神经网络架构。
- 将数据转换为正确的格式,并将其分成批。
- 根据你的需要预处理数据。
- 增加数据以增加规模并制作更好的训练模型。
- 将数据批次送入神经网络。
- 训练和监测训练集和验证数据集的变化。
- 测试你的模型,并保存以备将来使用。
本文中,我将重点关注图像数据。让我们先了解一下,然后再研究TensorFlow。
图像大多排列为3D阵列,尺寸指的是高度,宽度和颜色通道。例如,如果你现在截取了你的电脑的屏幕截图,则会首先将其转换为3D数组,然后将其压缩为PNG或JPG文件格式。
虽然这些图像对于人来说是相当容易理解的,但计算机很难理解它们。这种现象被称为语义鸿沟。我们的大脑可以查看图像,并在几秒钟内了解完整的图片。另一方面,计算机将图像视为一组数字。
在早期,人们试图把图像分解成像“模板”这样的“可理解的”格式。例如,一张脸总是有一个特定的结构,这个结构在每个人身上都有所保留,比如眼睛的位置和鼻子,或我们的脸的形状。但是这种方法并不可行,因为当要识别的对象的数量增加时,“模板”就不会成立。
2012年,深度神经网络架构赢得了ImageNet的挑战,这是一个从自然场景中识别物体的重大挑战。
那么人们通常使用哪种库/语言来解决图像识别问题?一个最近的一项调查发现,最流行的深度学习库是Python提供的API,其次是Lua中,Java和Matlab的。最流行的库是:
- Caffe
- DeepLearning4j
- TensorFlow
- Theano
- Torch
让我们来看看TensorFlow所提供的功能。 什么是TensorFlow?
“TensorFlow是一个使用数据流图进行数值计算的开源软件库。图中的节点表示数学运算,而图边表示在它们之间传递的多维数据阵列(又称张量)。灵活的体系结构允许你使用单个API将计算部署到桌面、服务器或移动设备中的一个或多个CPU或GPU。
如果你之前曾经使用过numpy,那么了解TensorFlow将会是小菜一碟!numpy和TensorFlow之间的一个主要区别是TensorFlow遵循一个“懒惰”的编程范例。它首先建立所有要完成的操作图形,然后当一个“会话”被调用时,它再“运行”图形。构建一个计算图可以被认为是TensorFlow的主要成分。要了解更多关于计算图的数学构成,请阅读这篇文章。
TensorFlow不仅仅是一个强大的神经网络库。它可以让你在其上构建其他机器学习算法,如决策树或k最近邻。
使用TensorFlow的优点是:
- 它有一个直观的结构,因为顾名思义,它有一个“张量流”。 你可以很容易地看到图的每一个部分。
- 轻松地在CPU / GPU上进行分布式计算。
- 平台灵活性。你可以在任何地方运行模型,无论是在移动设备,服务器还是PC上。
典型的“张量流”
每个库都有自己的“实施细节”,即按照其编码模式编写的一种方法。例如,在执行scikit-learn时,首先创建所需算法的对象,然后在训练集上构建一个模型,并对测试集进行预测。例如:
正如我刚才所说,TensorFlow遵循一个“懒惰”的方法。
在TensorFlow中运行程序的通常工作流程如下所示:
- 建立一个计算图。这可以是TensorFlow支持的任何数学操作。
- 初始化变量。
- 创建会话。
- 在会话中运行图形。
- 关闭会话。
接下来,让我们写一个小程序来添加两个数字!
在TensorFlow中实现神经网络
注意:我们可以使用不同的神经网络体系结构来解决这个问题,但是为了简单起见,我们需要实现前馈多层感知器。
神经网络的常见的实现如下:
- 定义要编译的神经网络体系结构。
- 将数据传输到你的模型。
- 将数据首先分成批次,然后进行预处理。
- 然后将其加入神经网络进行训练。
- 显示特定的时间步数的准确度。
- 训练结束后保存模型以供将来使用。
- 在新数据上测试模型并检查其执行情况。
我们的问题是识别来自给定的28x28图像的数字。我们有一部分图像用于训练,剩下的则用于测试我们的模型。所以首先下载数据集,数据集包含数据集中所有图像的压缩文件:train.csv和test.csv。数据集中不提供任何附加功能,只是以“.png”格式的原始图像。
我们将使用TensorFlow来建立一个神经网络模型。所以你应该先在你的系统中安装TensorFlow。 根据你的系统规格,请参阅官方安装指南进行安装。
我们将按照上述模板进行操作。用Python 2.7内核创建一个Jupyter笔记本,并按照下面的步骤。
导入所有必需的模块:
设置初始值,以便我们可以控制模型的随机性:
第一步是设置保管目录路径:
让我们看看数据集。这些格式为CSV格式,并且具有相应标签的文件名:
让我们看看我们的数据是什么样的!
上面的图像表示为numpy数组,如下所示:
为了更简单的数据处理,让我们将所有的图像存储为numpy数组:
由于这是一个典型的ML问题,为了测试我们模型的正确功能,我们创建了一个验证集。
现在,我们定义一些辅助函数,我们稍后使用它:
我们来定义我们的神经网络架构。我们定义了一个三层神经网络:输入,隐藏和输出。输入和输出中神经元的数量是固定的,因为输入的是28x28图像,输出的是10x1向量。我们隐藏层中有500个神经元。这个数字可以根据你的需要而有所不同。阅读文章以获得完整的代码,并深入了解它的工作原理。
原文发布时间为:2017-11-25