论文笔记之:Attention For Fine-Grained Categorization

 

Attention For Fine-Grained Categorization

Google ICLR 2015

  

  本文说是将Ba et al. 的基于RNN 的attention model 拓展为受限更少,或者说是非受限的视觉场景。这个工作和前者很大程度上的不同在于,用一个更加有效的视觉网络,并且在attention RNN之外进行视觉网络的预训练。

  前人的工作在学习 visual attention model 时已经解决了一些计算机视觉问题,并且表明加上不同的attention mechanisms 可以有效的提升算法的性能。但是之前的工作基本都是受限的环境或者基于玩具这种数据集,本文的算法可以处理更加具有挑战性的因素,如:遮挡等更加复杂的场景。下面这个数据集就给出了案例:

  

 

    本文模型框架主要来源于“ Multiple Object Recognition with Visual Attention ”,大体上是一直的,主要有一下几点不同:

  1. our model chooses actions for N glimpses and then classifies only after the final glimpse, as opposed to the sequence task in Ba et al. 每一个实验当中 glimpse的个数是固定的。

  2. 因为数据集中的图像是不断变化的,那么“foveal” glimpses patches 的大小和输入图像最短边的比例保持一致。

  3. 用“vanilla” RNN 来代替 LSTM,在 glimpse n 处,$r_n^{(1)}$ and $r_n^{(2)}$ 都由4096个点构成,当$i =1, 2$时,$r_n(i)$ 和 $r_{n+1}(i)$ 是全连接的。 

  4. 本文并非将 glimpse visual core $G_{image}(x_n|W_{image})$ and $G_{loc}(l_n|W_{loc})$的输出进行元素级相乘,而是将其输出进行concatenate实现线性组合,然后使其通过一个全连接层。

 

  最后,然后是最大的不同之处在于:将visual glimpse network $G_{image}(x_n|W_{image})$ 替换为 基于"GoogleLeNet" model的更加强大且有效的视觉核心(visual core)。

 

  由于是基于他人的框架,所以本文对模型方面的介绍较少,我待会回去解释下那个引用的文章,结合那篇文章,来理解这个paper。

  

  



    留下空白页,谈谈自己的感受

  我先去看看那个文章,回头再补回来!等我!!!

  

 

 

 

 

 

 

 

 

 

 

 

时间: 2024-10-12 02:06:00

论文笔记之:Attention For Fine-Grained Categorization的相关文章

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53    这篇文章的 Motivation 来自于 MDNet:    本文所提出的 framework 为:                             

论文笔记: Dual Deep Network for Visual Tracking

论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型:  2. Dual network 分别处理两路不同的网络,使得前景和背景更加具

Video Frame Synthesis using Deep Voxel Flow 论文笔记

  Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv    摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索.这个问题是非常具有挑战性的,因为,视频的外观和运动是非常复杂的.传统 optical-flow-based solutions 当 flow estimation 失败的时候,就变得非常困难:而最新的基于神经网络的方法直接预测像素值,经常产生模糊的结果. 于是,在此motivation的基

Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记

  Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2016    摘要: 许多经典问题可以看做是 图像转换问题(image transformation tasks).本文所提出的方法来解决的图像转换问题,是以监督训练的方式,训练一个前向传播的网络,利用的就是图像像素级之间的误差.这种方法在测试的时候非常有效,因为仅仅需要一次前向传播即可.但是,

论文笔记之:Visual Tracking with Fully Convolutional Networks

论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的

Face Aging with Conditional Generative Adversarial Network 论文笔记

Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28    Motivation: 本文是要根据最新的条件产生式对抗玩网络(CGANs)来完成,人类老年照片的估计. 主要是做了一下两个事情: 1. 根据年龄阶段,进行照片的老年估计,用 acGAN 网络来完成: 2. 提出一种 隐层变量优化算法(latent vector optimization approach),允许 acGAN 可以重构输入人脸

论文笔记之: Recurrent Models of Visual Attention

Recurrent Models of Visual Attention Google DeepMind   模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域转移到另一个区域.这么一个一个的区域,就是定义的part,或者说是 glimpse.然后将这些区域的信息结合起来用于整体的判断和感受. 站在某个底层的角度,物体的显著性已经将这个物体研究的足够透彻.本文就是从这些

论文笔记之:Deep Attention Recurrent Q-Network

Deep Attention Recurrent Q-Network 5vision groups     摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recu

论文笔记之:Multiple Object Recognition With Visual Attention

   Multiple Object Recognition With Visual Attention  Google DeepMind  ICRL 2015 本文提出了一种基于 attention 的用于图像中识别多个物体的模型.该模型是利用RL来训练 Deep RNN,以找到输入图像中最相关的区域.尽管在训练的过程中,仅仅给出了类别标签,但是仍然可以学习定位并且识别出多个物体. Deep Recurrent Visual Attention Model 文中先以单个物体的分类为基础,再拓展