内核request_mem_region 和 ioremap的理解【转】

转自:http://blog.csdn.net/skyflying2012/article/details/8672011

版权声明:本文为博主kerneler辛苦原创,未经允许不得转载。

 

几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种:

 

  (1)I/O映射方式(I/O-mapped)

  典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。 

 

  (2)内存映射方式(Memory-mapped)

  RISC指令系统的CPU(如MIPS ARM PowerPC等)通常只实现一个物理地址空间,像这种情况,外设的I/O端口的物理地址就被映射到内存地址空间中,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。

 

  但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。

  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间。

     但要使用I/O内存首先要申请,然后才能映射,使用I/O端口首先要申请,或者叫请求,对于I/O端口的请求意思是让内核知道你要访问这个端口,这样内核知道了以后它就不会再让别人也访问这个端口了.毕竟这个世界僧多粥少啊.申请I/O端口的函数是request_region, 申请I/O内存的函数是request_mem_region, 来自include/linux/ioport.h,  如下:

  * Convenience shorthand with allocation */

#define request_region(start,n,name)    __request_region(&ioport_resource, (start), (n), (name))

#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))

#define rename_region(region, newname) do { (region)->name = (newname); } while (0)

 

extern struct resource * __request_region(struct resource *,

                                         resource_size_t start,

                                         resource_size_t n, const char *name);

这里关键来解析一下request_mem_region函数。

Linux把基于I/O映射方式的I/O端口和基于内存映射方式的I/O端口资源统称为“I/O区域”(I/O Region)。I/O Region仍然是一种I/O资源,因此它仍然可以用resource结构类型来描述。

Linux是以一种倒置的树形结构来管理每一类I/O资源(如:I/O端口、外设内存、DMA和IRQ)的。每一类I/O资源都对应有一颗倒置的资源树,树中的每一个节点都是一个resource结构,而树的根结点root则描述了该类资源的整个资源空间。


1.结构体
   1.1>struct resource iomem_resource = { "PCI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };
   1.2>struct resource {
                const char *name;
                unsigned long start, end;
                unsigned long flags;
                struct resource *parent, *sibling, *child;
             };
2.调用函数
   request_mem_region(S1D_PHYSICAL_REG_ADDR,S1D_PHYSICAL_REG_SIZE, "EpsonFB_RG")
#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))
__request_region检查是否可以安全占用起始物理地址S1D_PHYSICAL_REG_ADDR之后的连续S1D_PHYSICAL_REG_SIZE字节大小空间

struct resource * __request_region(struct resource *parent, unsigned long start, unsigned long n, const char *name)
{
    struct resource *res = kmalloc(sizeof(*res), GFP_KERNEL);

    if (res) {
        memset(res, 0, sizeof(*res));
         res->name = name;
         res->start = start;
         res->end = start + n - 1;
         res->flags = IORESOURCE_BUSY;

         write_lock(&resource_lock);

        for (;;) {
            struct resource *conflict;

             conflict = __request_resource(parent, res);    

             //sibling parent下的所有单元,检测申请部分是否存在交叠冲突
            if (!conflict)                                 

             //conflict=0;申请成功,正常安置了[start,end]到相应位置
                break;
            if (conflict != parent) {
                 parent = conflict;
                if (!(conflict->flags & IORESOURCE_BUSY))
                    continue;
            }
              kfree
(res);                                   

             //检测到了资源交叠冲突,kfree归还kmalloc申请的内存
             res = NULL;
            break;
        }
         write_unlock(&resource_lock);
    }
    return res;
}

static struct resource * __request_resource(struct resource *root, struct resource *new)
{
    unsigned long start = new->start;
    unsigned long end = new->end;
    struct resource *tmp, **p;

    if (end < start)
        return root;
    if (start < root->start)
        return root;
    if (end > root->end)
        return root;
     p = &root->child;                                      

    //root下的第一个链表元素*p.[child链表是以I/O资源物理地址从低到高的顺序排列的]
    for (;;) {
         tmp = *p;
        if (!tmp || tmp->start > end) {
            new->sibling = tmp;
            *p = new;
//可以从root->child=null开始我们的分析考虑,此时tmp=null,那么第一个申请将以!tmp条件满足而进入
//这时root->child的值为new指针,new->sibling = tmp = null;当第二次申请发生时:如果tmp->start > end成立,
//那么,root->child的值为new指针,new->sibling = tmp;这样就链接上了,空间分布图如:
//child=[start,end]-->[tmp->start,tmp->end](1);

//如果条件tmp->start > end不成立,那么只能是!tmp条件进入
//那么,root->child的值不变,tmp->sibling = new;new->sibling = tmp = null这样就链接上了,空间分布图如:
//child=[child->start,child->end]-->[start,end](2);
//当第三次申请发生时:如果start在(2)中的[child->end,end]之间,那么tmp->end < start将成立,继而continue,
//此时tmp = (2)中的[start,end],因为tmp->start < end,所以继续执行p = &tmp->slibing = null,
//因为tmp->end > start,所以资源冲突,返回(2)中的[start,end]域
//综上的两个边界值情况和一个中间值情况的分析,可以知道代码实现了一个从地地址到高地址的顺序链表
//模型图:childe=[a,b]-->[c,d]-->[e,f],此时有一个[x,y]需要插入进去,tmp作为sibling指针游动
//tmp指向child=[a,b],
//tmp指向[a,b],当tmp->start>y时,插入后的链接图为:child=[x,y]-->[a,b]-->[c,d]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向[c,d],当tmp->start>y时,插入后的链接图为:child=[a,b]-->[x,y]-->[c,d]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向[e,f],当tmp->start>y时,插入后的链接图为:child=[a,b]-->[c,d]-->[x,y]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向null                  ,插入后的链接图为:child=[a,b]-->[c,d]-->[e,f]-->[x,y]-->null;
//顺利的达到了检测冲突,顺序链接的目的
            new->parent = root;    
            return NULL;
        }
         p = &tmp->sibling;
        if (tmp->end < start)
            continue;
        return tmp;
    }
}

其实说白了,request_mem_region函数并没有做实际性的映射工作,只是告诉内核要使用一块内存地址,声明占有,也方便内核管理这些资源。

重要的还是ioremap函数,ioremap主要是检查传入地址的合法性,建立页表(包括访问权限),完成物理地址到虚拟地址的转换。

 

void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);

  iounmap函数用于取消ioremap()所做的映射,原型如下:

void iounmap(void * addr);

  这两个函数都是实现在mm/ioremap.c文件中。

  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))

  最后,特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。

时间: 2024-08-02 00:12:20

内核request_mem_region 和 ioremap的理解【转】的相关文章

request_mem_region 与 ioremap【转】

转自:http://blog.csdn.net/alada007/article/details/7700125 如果从根本上说起的话应该从Intel的处理器芯片与其它的芯片的不同说起,与这两个函数相关的是对 I/OPort与内存的寻址方式,intel的处理器中内存与外部IOPort是独立编址与寻址的,这就有了两种地址空间分别是内存地址空间与IO地址空间,访问IO地址空间需使用不同的指令.与intel不同的是有些处理器(如PowerPC等)就只有一个地址空间,即内存空间,在这种情况下,外设的I/

关于内核中spinlock的一些个人理解 【转】

由于2.6内核可以抢占,应该在驱动程序中使用 preempt_disable() 和 preempt_enable(),从而保护代码段不被抢占(禁止 IRQ 同时也就隐式地禁止了抢占).preempt_disable和preempt_enable 调用.spin_lock_irq的功能和上面的spin_lock提供的功能差不多,只不过它还多做了一步,就是把中断也关上,主要用于当前保护的数据 在可能的中断程序中也要用到的情况.spin_lock_irqsave和spin_lock_irq的功能一样

Linux用户空间与内核空间(理解高端内存)

Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中.   Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图.   Linux内核地址空间划分 通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间.注意这里

基础:内核态和用户态的区别

当一个任务(进程)执行系统调用而陷入内核代码中执行时,我们就称进程处于内核运行态(或简称为内核态).此时处理器处于特权级最高的(0级)内核代码中执行.当进程处于内核态时,执行的内核代码会使用当前进程的内核栈.每个进程都有自己的内核栈.当进程在执行用户自己的代码时,则称其处于用户运行态(用户态).即此时处理器在特权级最低的(3级)用户代码中运行.当正在执行用户程序而突然被中断程序中断时,此时用户程序也可以象征性地称为处于进程的内核态.因为中断处理程序将使用当前进程的内核栈.这与处于内核态的进程的状

Linux内核中常见内存分配函数(三)

ioremap void * ioremap (unsigned long offset, unsigned long size) ioremap是一种更直接的内存"分配"方式,使用时直接指定物理起始地址和需要分配内存的大小,然后将该段 物理地址映射到内核地址空间.ioremap用到的物理地址空间都是事先确定的,和上面的几种内存 分配方式并不太一样,并不是分配一段新的物理内存. ioremap多用于设备驱动,可以让CPU直接访问外部设备的IO空间.ioremap能映射的内存由原有的物理

用户态和内核态

(1)用户态和内核态的概念? --->内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序--->用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取 (2)为什么需要用户态和内核态? --->由于需要限制不同的程序之间的访问能力, 防止他们获取别的程序的内存数据, 或者获取外围设备的数据, 并发送到网络, CPU划分出两个权限等级 :用户态 和 内核态 (3)用

Linux用户态和内核态

转载 - Linux用户态和内核态 作者 digoal 日期 2016-11-20 标签 Linux , 内核态 , 用户态 背景 原文 http://longmans1985.blog.163.com/blog/static/7060547520109262178736/ 原文 1. 用户态和内核态的概念区别 究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能和代码的逻辑性上,先看一个

十天学Linux内核之第七天---电源开和关时都发生了什么

原文:十天学Linux内核之第七天---电源开和关时都发生了什么 说实话感觉自己快写不下去了,其一是有些勉强跟不上来,其二是感觉自己越写越差,刚开始可能是新鲜感以及很多读者的鼓励,现在就是想快点完成自己制定的任务,不过总有几个读者给自己鼓励,很欣慰的事情,不多感慨了,加紧时间多多去探索吧,今天要去描述的是电源开和关时都发生了什么,一起去看看吧~~ bootloader引导装入程序将内核映像加载到内存并处理控制权传送到内核后在内核引导时每个子系统都必须要初始化,我们根据实际执行的线性顺序跟踪内核的

十天学Linux内核之第五天---有关Linux文件系统实现的问题

原文:十天学Linux内核之第五天---有关Linux文件系统实现的问题 有时间睡懒觉了,却还是五点多醒了,不过一直躺倒九点多才算起来,昨晚一直在弄飞凌的嵌入式开发板,有些问题没解决,自己电脑系统的问题,虽然Win10发布了,,但我还是好喜欢XP呀,好想回家用用家里的XP来玩玩这块板子,不知不觉也第五天了,感觉代码都有些模糊,连自己都不是很清楚了,担心现在分享起来比较困惑,各路大神多加批评呀,觉得渣渣的尽量指正出来,拉出来批评,今天还是来总结一下有关Linux文件系统的问题吧~ Linux的使用