排序算法系列之二叉查找树
基本概念
二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树:
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉排序树。
序列:1 3 4 6 7 8 10 13 14 序列:2 3 4 6 7 9 13 15 17 18 20
通常采取二叉链表作为二叉排序树的存储结构。中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。
二叉查找树查找算法思想
在二叉查找树b中查找x的过程为:
- 若b是空树,则搜索失败,否则:
- 若x等于b的根节点的数据域之值,则查找成功;否则:
- 若x小于b的根节点的数据域之值,则搜索左子树;否则:
- 查找右子树。
举例图:
二叉查找树插入算法思想
向一个二叉查找树b中插入一个节点s的算法,过程为:
- 若b是空树,则将s所指结点作为根节点插入,否则:
- 若s->data等于b的根节点的数据域之值,则返回,否则:
- 若s->data小于b的根节点的数据域之值,则把s所指节点插入到左子树中,否则:
- 把s所指节点插入到右子树中。
举例图:
二叉查找树删除算法思想
在二叉排序树删去一个结点,分三种情况讨论:
- 若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
- 若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树(当*p是左子树)或右子树(当*p是右子树)即可,作此修改也不破坏二叉排序树的特性。
- 若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令*p的左子树为*f的左/右(依*p是*f的左子树还是右子树而定)子树,*s为*p左子树的最右下的结点,而*p的右子树为*s的右子树;其二是令*p的直接前驱(或直接后继)替代*p,然后再从二叉排序树中删去它的直接前驱(或直接后继)。
举例图:删除节点值 6。方便记忆:节点6的右孩子直接替换删除节点,节点6的左孩子挂在节点6的右孩子上。
二叉查找树性能分析
每个结点的为该结点的层次数。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树蜕变为单支树,树的深度为,其平均查找长度为(和顺序查找相同),最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和成正比。
二叉查找树C语言实现
代码来自http://chiyx.iteye.com/blog/1628947
c语言.h代码
/*file:biTree.h*/ #ifndef CHIYX_BITREE #define CHIYX_BITREE #ifndef NULL #define NULL 0 #endif typedef int DataType; //二叉树的节点结构 typedef struct BiTreeNode { DataType data; struct BiTreeNode *parent; struct BiTreeNode *left; struct BiTreeNode *right; }BiTreeNode, *BiTree; //查找:返回第一个等于data域等于key的节点,不存在返回NULL BiTreeNode *search(BiTree *biTree, DataType key); //返回二叉树的最小节点,空树返回NULL BiTreeNode *minImum(BiTree *biTree); //返回二叉树的最大节点,空树返回NULL BiTreeNode *maxImum(BiTree *biTree); //返回节点x的后继节点,不存在后继(节点x为最大节点)返回NULL BiTreeNode *successor(BiTreeNode *x); //返回节点x的前驱节点,不存在前驱(节点x为最小节点)返回NULL BiTreeNode *predecessor(BiTreeNode *x); //将值data插入到二叉树中(生成一个值为data的节点) void insertNode(BiTree *biTree, DataType data); //删除一个值为data的节点 void deleteNode(BiTree *biTree, DataType data); //中序遍历二叉树 void inorderTraversal(BiTree *biTree, void (*visitor)(BiTreeNode *node)); #endif
C语言实现代码:
/*file:biTree.c*/ #include <stdlib.h> #include "biTree.h" //查找:返回第一个等于data域等于key的节点,不存在返回NULL BiTreeNode *search(BiTree *biTree, DataType key) { BiTreeNode *curNode = *biTree; while (curNode != NULL && curNode->data != key) { if (key < curNode->data) { curNode = curNode->left; } else { curNode = curNode->right; } } return curNode; } //返回二叉树的最小节点,空树返回NULL BiTreeNode *minImum(BiTree *biTree) { BiTreeNode *curNode = *biTree; while (curNode != NULL && curNode->left != NULL) { curNode = curNode->left; } return curNode; } //返回二叉树的最大节点,空树返回NULL BiTreeNode *maxImum(BiTree *biTree) { BiTreeNode *curNode = *biTree; while (curNode != NULL && curNode->right != NULL) { curNode = curNode->right; } return curNode; } //返回节点x的后继节点,不存在后继(节点x为最大节点)返回NULL BiTreeNode *successor(BiTreeNode *x) { if (x == NULL) return NULL; //存在右子树,则后继节点为其右子树中最小的节点 if (x != NULL && x->right != NULL) { return minImum(&(x->right)); } while (x->parent != NULL && x->parent->right == x) { x = x->parent; } return x->parent; //错误版本为 x, 此处应该返回父结点 } //返回节点x的前驱节点,不存在前驱(节点x为最小节点)返回NULL BiTreeNode *predecessor(BiTreeNode *x) { if (x == NULL) return NULL; //存在左子树,则后继节点为其左子树中最大的节点 if (x != NULL && x->left != NULL) { return maxImum(&(x->left)); } while (x->parent != NULL && x->parent->left == x) { x = x->parent; } return x->parent; //错误版本为 x, 此处应该返回父结点 } void insertNode(BiTree *biTree, DataType data) { //创建节点 BiTreeNode *targetNode; targetNode = (BiTreeNode *)malloc(sizeof(BiTreeNode)); //没有足够内存 if (targetNode == NULL) return; targetNode->data = data; targetNode->parent = NULL; targetNode->left = NULL; targetNode->right = NULL; BiTreeNode *p, *y; p = *biTree; y = NULL; while (p != NULL ) { y = p; if (targetNode->data < p->data) { p = p->left; } else { p = p->right; } } //空树,将新节点置为树根 if (y == NULL) { *biTree = targetNode; } else { if (targetNode->data < y->data) { y->left = targetNode; } else { y->right = targetNode; } } targetNode->parent = y; } //删除一个值为data的节点 void deleteNode(BiTree *biTree, DataType data) { //查找待删除的节点 BiTreeNode *targetNode, *x, *y; targetNode = search(biTree, data); if (targetNode == NULL) return; //找出真正的删除节点,如果目标节点最多只有一个子树,则其为真正删除的节点 //否则其后继节点(最多只有一个子树,想想为什么)为真正删除的节点,然后将后继节点的值赋给目标节点 if (targetNode->left == NULL || targetNode->right == NULL) { y = targetNode; } else { y = successor(targetNode); } if (y->left != NULL) { x = y->left; } else { x = y->right; } if (x != NULL) { x->parent = y->parent; } //如果y是根节点, 则根节点变为x if (y->parent == NULL) { *biTree = x; } else { if (y->parent->right == y) { y->parent->right = x; } else { y->parent->left = x; } } if (y != targetNode) { targetNode->data = y->data; } //释放y占有的空间 free(y); } //中序遍历二叉树 void inorderTraversal(BiTree *biTree, void (*visitor)(BiTreeNode *node)) { BiTreeNode *curNode; curNode = *biTree; if (curNode != NULL) { //遍历左子树 inorderTraversal(&(curNode->left), visitor); //访问节点 visitor(curNode); //遍历右子树 inorderTraversal(&(curNode->right), visitor); } }
#include <stdio.h> #include <stdlib.h> #include "biTree.h" #define N 10 void printNode(BiTreeNode *node); int main(int argc, char *argv[]) { BiTreeNode *root; int i; root = NULL; int data[N] = {10, 23, 11, 98, 111, 87, 34, 11, 33, 8}; for (i = 0; i < N; i++) { insertNode(&root, data[i]); } printf("before delete:\n"); inorderTraversal(&root, printNode); printf("\n"); deleteNode(&root, 11); deleteNode(&root, 8); printf("after delete:\n"); inorderTraversal(&root, printNode); printf("\n"); exit(0); } void printNode(BiTreeNode *node) { printf("%d\t", node->data); }
二叉查找树优化
虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn):
- Size Balanced Tree(SBT)
- AVL树
- 红黑树(红黑树系列文章)
- Treap(Tree+Heap)
这些均可以使查找树的高度为。
后续再更!
时间: 2024-11-01 19:18:48