java-并发-CountDownLatch、CyclicBarrier和Semaphore

 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。

  以下是本文目录大纲:

  一.CountDownLatch用法

  二.CyclicBarrier用法

  三.Semaphore用法

  若有不正之处请多多谅解,并欢迎批评指正。

  请尊重作者劳动成果,转载请标明原文链接:

  http://www.cnblogs.com/dolphin0520/p/3920397.html

  

一.CountDownLatch用法

  CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

  CountDownLatch类只提供了一个构造器:


1

public CountDownLatch(int count)
{  };  
//参数count为计数值

   然后下面这3个方法是CountDownLatch类中最重要的方法:


1

2

3

public void await() throws InterruptedException
{ };   
//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行

public boolean await(long timeout,
TimeUnit unit) 
throws InterruptedException
{ };  
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行

public void countDown()
{ };  
//将count值减1

   下面看一个例子大家就清楚CountDownLatch的用法了:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

public class Test
{

     public static void main(String[]
args) {   

         final CountDownLatch
latch = 
new CountDownLatch(2);

          

         new Thread(){

             public void run()
{

                 try {

                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                    Thread.sleep(3000);

                    System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                    latch.countDown();

                catch (InterruptedException
e) {

                    e.printStackTrace();

                }

             };

         }.start();

          

         new Thread(){

             public void run()
{

                 try {

                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                     Thread.sleep(3000);

                     System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                     latch.countDown();

                catch (InterruptedException
e) {

                    e.printStackTrace();

                }

             };

         }.start();

          

         try {

             System.out.println("等待2个子线程执行完毕...");

            latch.await();

            System.out.println("2个子线程已经执行完毕");

            System.out.println("继续执行主线程");

        catch (InterruptedException
e) {

            e.printStackTrace();

        }

     }

}

   执行结果:

线程Thread-0正在执行
线程Thread-1正在执行
等待2个子线程执行完毕...
线程Thread-0执行完毕
线程Thread-1执行完毕
2个子线程已经执行完毕
继续执行主线程

二.CyclicBarrier用法

  字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。

  CyclicBarrier类位于java.util.concurrent包下,CyclicBarrier提供2个构造器:


1

2

3

4

5

public CyclicBarrier(int parties,
Runnable barrierAction) {

}

 

public CyclicBarrier(int parties)
{

}

  参数parties指让多少个线程或者任务等待至barrier状态;参数barrierAction为当这些线程都达到barrier状态时会执行的内容。

  然后CyclicBarrier中最重要的方法就是await方法,它有2个重载版本:


1

2

public int await() throws InterruptedException,
BrokenBarrierException { };

public int await(long timeout,
TimeUnit unit)
throws InterruptedException,BrokenBarrierException,TimeoutException
{ };

   第一个版本比较常用,用来挂起当前线程,直至所有线程都到达barrier状态再同时执行后续任务;

  第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达barrier状态就直接让到达barrier的线程执行后续任务。

  下面举几个例子就明白了:

  假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

public class Test
{

    public static void main(String[]
args) {

        int N
4;

        CyclicBarrier
barrier  = 
new CyclicBarrier(N);

        for(int i=0;i<N;i++)

            new Writer(barrier).start();

    }

    static class Writer extends Thread{

        private CyclicBarrier
cyclicBarrier;

        public Writer(CyclicBarrier
cyclicBarrier) {

            this.cyclicBarrier
= cyclicBarrier;

        }

 

        @Override

        public void run()
{

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();

            catch (InterruptedException
e) {

                e.printStackTrace();

            }catch(BrokenBarrierException
e){

                e.printStackTrace();

            }

            System.out.println("所有线程写入完毕,继续处理其他任务...");

        }

    }

}

   执行结果:

线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

  从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

  当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

  如果说想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

public class Test
{

    public static void main(String[]
args) {

        int N
4;

        CyclicBarrier
barrier  = 
new CyclicBarrier(N,new Runnable()
{

            @Override

            public void run()
{

                System.out.println("当前线程"+Thread.currentThread().getName());   

            }

        });

         

        for(int i=0;i<N;i++)

            new Writer(barrier).start();

    }

    static class Writer extends Thread{

        private CyclicBarrier
cyclicBarrier;

        public Writer(CyclicBarrier
cyclicBarrier) {

            this.cyclicBarrier
= cyclicBarrier;

        }

 

        @Override

        public void run()
{

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();

            catch (InterruptedException
e) {

                e.printStackTrace();

            }catch(BrokenBarrierException
e){

                e.printStackTrace();

            }

            System.out.println("所有线程写入完毕,继续处理其他任务...");

        }

    }

}

   运行结果:

线程Thread-0正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2正在写入数据...
线程Thread-3正在写入数据...
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
当前线程Thread-3
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

  从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。

   下面看一下为await指定时间的效果:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

public class Test
{

    public static void main(String[]
args) {

        int N
4;

        CyclicBarrier
barrier  = 
new CyclicBarrier(N);

         

        for(int i=0;i<N;i++)
{

            if(i<N-1)

                new Writer(barrier).start();

            else {

                try {

                    Thread.sleep(5000);

                catch (InterruptedException
e) {

                    e.printStackTrace();

                }

                new Writer(barrier).start();

            }

        }

    }

    static class Writer extends Thread{

        private CyclicBarrier
cyclicBarrier;

        public Writer(CyclicBarrier
cyclicBarrier) {

            this.cyclicBarrier
= cyclicBarrier;

        }

 

        @Override

        public void run()
{

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                try {

                    cyclicBarrier.await(2000,
TimeUnit.MILLISECONDS);

                catch (TimeoutException
e) {

                    //
TODO Auto-generated catch block

                    e.printStackTrace();

                }

            catch (InterruptedException
e) {

                e.printStackTrace();

            }catch(BrokenBarrierException
e){

                e.printStackTrace();

            }

            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");

        }

    }

}

   执行结果:

线程Thread-0正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3正在写入数据...
java.util.concurrent.TimeoutException
Thread-1所有线程写入完毕,继续处理其他任务...
Thread-0所有线程写入完毕,继续处理其他任务...
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
Thread-2所有线程写入完毕,继续处理其他任务...
java.util.concurrent.BrokenBarrierException
线程Thread-3写入数据完毕,等待其他线程写入完毕
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
Thread-3所有线程写入完毕,继续处理其他任务...

  上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。

  另外CyclicBarrier是可以重用的,看下面这个例子:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

public class Test
{

    public static void main(String[]
args) {

        int N
4;

        CyclicBarrier
barrier  = 
new CyclicBarrier(N);

         

        for(int i=0;i<N;i++)
{

            new Writer(barrier).start();

        }

         

        try {

            Thread.sleep(25000);

        catch (InterruptedException
e) {

            e.printStackTrace();

        }

         

        System.out.println("CyclicBarrier重用");

         

        for(int i=0;i<N;i++)
{

            new Writer(barrier).start();

        }

    }

    static class Writer extends Thread{

        private CyclicBarrier
cyclicBarrier;

        public Writer(CyclicBarrier
cyclicBarrier) {

            this.cyclicBarrier
= cyclicBarrier;

        }

 

        @Override

        public void run()
{

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

             

                cyclicBarrier.await();

            catch (InterruptedException
e) {

                e.printStackTrace();

            }catch(BrokenBarrierException
e){

                e.printStackTrace();

            }

            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");

        }

    }

}

   执行结果:

线程Thread-0正在写入数据...
线程Thread-1正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
Thread-0所有线程写入完毕,继续处理其他任务...
Thread-3所有线程写入完毕,继续处理其他任务...
Thread-1所有线程写入完毕,继续处理其他任务...
Thread-2所有线程写入完毕,继续处理其他任务...
CyclicBarrier重用
线程Thread-4正在写入数据...
线程Thread-5正在写入数据...
线程Thread-6正在写入数据...
线程Thread-7正在写入数据...
线程Thread-7写入数据完毕,等待其他线程写入完毕
线程Thread-5写入数据完毕,等待其他线程写入完毕
线程Thread-6写入数据完毕,等待其他线程写入完毕
线程Thread-4写入数据完毕,等待其他线程写入完毕
Thread-4所有线程写入完毕,继续处理其他任务...
Thread-5所有线程写入完毕,继续处理其他任务...
Thread-6所有线程写入完毕,继续处理其他任务...
Thread-7所有线程写入完毕,继续处理其他任务...

  从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。

三.Semaphore用法

  Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

  Semaphore类位于java.util.concurrent包下,它提供了2个构造器:


1

2

3

4

5

6

public Semaphore(int permits)
{          
//参数permits表示许可数目,即同时可以允许多少线程进行访问

    sync
new NonfairSync(permits);

}

public Semaphore(int permits, boolean fair)
{    
//这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可

    sync
= (fair)? 
new FairSync(permits)
new NonfairSync(permits);

}

   下面说一下Semaphore类中比较重要的几个方法,首先是acquire()、release()方法:


1

2

3

4

public void acquire() throws InterruptedException
{  }     
//获取一个许可

public void acquire(int permits) throws InterruptedException
{ }    
//获取permits个许可

public void release()
{ }          
//释放一个许可

public void release(int permits)
{ }    
//释放permits个许可

  acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。

  release()用来释放许可。注意,在释放许可之前,必须先获获得许可。

  这4个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:


1

2

3

4

public boolean tryAcquire()
{ };    
//尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false

public boolean tryAcquire(long timeout,
TimeUnit unit) 
throws InterruptedException
{ };  
//尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false

public boolean tryAcquire(int permits)
{ }; 
//尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false

public boolean tryAcquire(int permits, long timeout,
TimeUnit unit) 
throws InterruptedException
{ }; 
//尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false

   另外还可以通过availablePermits()方法得到可用的许可数目。

  下面通过一个例子来看一下Semaphore的具体使用:

  假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

public class Test
{

    public static void main(String[]
args) {

        int N
8;            //工人数

        Semaphore
semaphore = 
new Semaphore(5); //机器数目

        for(int i=0;i<N;i++)

            new Worker(i,semaphore).start();

    }

     

    static class Worker extends Thread{

        private int num;

        private Semaphore
semaphore;

        public Worker(int num,Semaphore
semaphore){

            this.num
= num;

            this.semaphore
= semaphore;

        }

         

        @Override

        public void run()
{

            try {

                semaphore.acquire();

                System.out.println("工人"+this.num+"占用一个机器在生产...");

                Thread.sleep(2000);

                System.out.println("工人"+this.num+"释放出机器");

                semaphore.release();           

            catch (InterruptedException
e) {

                e.printStackTrace();

            }

        }

    }

}

    执行结果:

工人0占用一个机器在生产...
工人1占用一个机器在生产...
工人2占用一个机器在生产...
工人4占用一个机器在生产...
工人5占用一个机器在生产...
工人0释放出机器
工人2释放出机器
工人3占用一个机器在生产...
工人7占用一个机器在生产...
工人4释放出机器
工人5释放出机器
工人1释放出机器
工人6占用一个机器在生产...
工人3释放出机器
工人7释放出机器
工人6释放出机器

  

  下面对上面说的三个辅助类进行一个总结:

  1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:

    CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;

    而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;

    另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。

  2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

  参考资料:

  《Java编程思想》

  http://www.itzhai.com/the-introduction-and-use-of-a-countdownlatch.html

  http://leaver.me/archives/3220.html

  http://developer.51cto.com/art/201403/432095.htm

  http://blog.csdn.net/yanhandle/article/details/9016329

  http://blog.csdn.net/cutesource/article/details/5780740

  http://www.cnblogs.com/whgw/archive/2011/09/29/2195555.html

时间: 2024-09-27 15:54:58

java-并发-CountDownLatch、CyclicBarrier和Semaphore的相关文章

Java并发CountDownLatch编程开发示例

在多线程编程时,常常需要解决线程同步问题,在上一节讲得BlockQueue的take和put方法,是通过阻塞来控制生产者和消费者执行流程,它其实也是在解决线程同步问题.另外在线程同步问题还可以通过很多方式解决比如信号量,栅栏,闭锁.今天所说的CountDownLatch就是一种闭锁同步类,它的作用就像一扇门,在达到结束状态之前门是关闭的,并且没有任何线程可以通过这扇门,当达到了结束状态,门打开,所有的线程可以通过.并且结束后,不会再关闭. CountDownLatch简介 CountDownLa

Java并发编程:CountDownLatch、CyclicBarrier和Semaphore

在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法. 以下是本文目录大纲: 一.CountDownLatch用法 二.CyclicBarrier用法 三.Semaphore用法 若有不正之处请多多谅解,并欢迎批评指正. 请尊重作者劳动成果,转载请标明原文链接: http://www.cnblogs.com/dolphin0520/p/3920397.htm

java并发编程学习:用 Semaphore (信号量)控制并发资源

并发编程这方面以前关注得比较少,恶补一下,推荐一个好的网站:并发编程网 - ifeve.com,上面全是各种大牛原创或编译的并发编程文章. 今天先来学习Semaphore(信号量),字面上看,根本不知道这东西是干啥的,借用 并发工具类(三)控制并发线程数的Semaphore一文中的交通红绿信号灯的例子来理解一下: 一条4车道的主干道,假设100米长,每辆车假设占用的长度为10米(考虑到前后车距),也就是说这条道上满负载运行的话,最多只能容纳4*(100/10)=40辆车,如果有120辆车要通过的

Java并发编程之栅栏(CyclicBarrier)实例介绍_java

栅栏类似闭锁,但是它们是有区别的. 1.闭锁用来等待事件,而栅栏用于等待其他线程.什么意思呢?就是说闭锁用来等待的事件就是countDown事件,只有该countDown事件执行后所有之前在等待的线程才有可能继续执行;而栅栏没有类似countDown事件控制线程的执行,只有线程的await方法能控制等待的线程执行. 2.CyclicBarrier强调的是n个线程,大家相互等待,只要有一个没完成,所有人都得等着. 场景分析:10个人去春游,规定达到一个地点后才能继续前行.代码如下 复制代码 代码如

java并发编程学习:如何等待多个线程执行完成后再继续后续处理(synchronized、join、FutureTask、CyclicBarrier)

多线程应用中,经常会遇到这种场景:后面的处理,依赖前面的N个线程的处理结果,必须等前面的线程执行完毕后,后面的代码才允许执行. 在我不知道CyclicBarrier之前,最容易想到的就是放置一个公用的static变量,假如有10个线程,每个线程处理完上去累加下结果,然后后面用一个死循环(或类似线程阻塞的方法),去数这个结果,达到10个,说明大家都爽完了,可以进行后续的事情了,这个想法虽然土鳖,但是基本上跟语言无关,几乎所有主流编程语言都支持. package yjmyzz.test; publi

Java并发编程相关面试问题

基础概念 1.什么是原子操作?在Java Concurrency API中有哪些原子类(atomic classes)? 原子操作(atomic operation)意为"不可被中断的一个或一系列操作" .处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作. 在Java中可以通过锁和循环CAS的方式来实现原子操作. CAS操作--Compare & Set,或是 Compare & Swap,现在几乎所有的CPU指令都支持CAS的原子操作. 原子操作是

Java 并发工具包 java.util.concurrent 用户指南

译序 本指南根据 Jakob Jenkov 最新博客翻译,请随时关注博客更新:http://tutorials.jenkov.com/java-util-concurrent/index.html. 本指南已做成中英文对照阅读版的 pdf 文档,有兴趣的朋友可以去 Java并发工具包java.util.concurrent用户指南中英文对照阅读版.pdf[带书签] 进行下载. 1. java.util.concurrent - Java 并发工具包 Java 5 添加了一个新的包到 Java 平

【JAVA秒会技术之多线程】Java 并发工具包 java.util.concurrent 用户指南

1. java.util.concurrent - Java 并发工具包 Java 5 添加了一个新的包到 Java 平台,java.util.concurrent 包.这个包包含有一系列能够让 Java 的并发编程变得更加简单轻松的类.在这个包被添加以前,你需要自己去动手实现自己的相关工具类.本文我将带你一一认识 java.util.concurrent 包里的这些类,然后你可以尝试着如何在项目中使用它们.本文中我将使用 Java 6 版本,我不确定这和 Java 5 版本里的是否有一些差异.

JAVA并发(三)

并发 Table of Contents 1 什么是并发问题. 2 java中synchronized的用法 3 Java中的锁与排队上厕所. 4 何时释放锁? 5 Lock的使用 6 利用管道进行线程间通信 7 阻塞队列 8 使用Executors.Executor.ExecutorService.ThreadPoolExecutor 9 并发流程控制 10 并发3定律 11 由并发到并行 1 什么是并发问题. 多个进程或线程同时(或着说在同一段时间内)访问同一资源会产生并发问题. 银行两操作