Java中的锁

原文链接 作者:Jakob Jenkov 译者:申章 校对:丁一

锁像synchronized同步块一样,是一种线程同步机制,但比Java中的synchronized同步块更复杂。因为锁(以及其它更高级的线程同步机制)是由synchronized同步块的方式实现的,所以我们还不能完全摆脱synchronized关键字(译者注:这说的是Java 5之前的情况)。

自Java 5开始,java.util.concurrent.locks包中包含了一些锁的实现,因此你不用去实现自己的锁了。但是你仍然需要去了解怎样使用这些锁,且了解这些实现背后的理论也是很有用处的。可以参考我对java.util.concurrent.locks.Lock的介绍,以了解更多关于锁的信息。

以下是本文所涵盖的主题:

  1. 一个简单的锁
  2. 锁的可重入性
  3. 锁的公平性
  4. 在finally语句中调用unlock()

一个简单的锁

让我们从java中的一个同步块开始:

查看源代码

打印帮助

1 public class Counter{
2     private int count = 0;
3  
4     public int inc(){
5         synchronized(this){
6             return ++count;
7         }
8     }
9 }

可以看到在inc()方法中有一个synchronized(this)代码块。该代码块可以保证在同一时间只有一个线程可以执行return ++count。虽然在synchronized的同步块中的代码可以更加复杂,但是++count这种简单的操作已经足以表达出线程同步的意思。

以下的Counter类用Lock代替synchronized达到了同样的目的:

查看源代码

打印帮助

01 public class Counter{
02     private Lock lock = new Lock();
03     private int count = 0;
04  
05     public int inc(){
06         lock.lock();
07         int newCount = ++count;
08         lock.unlock();
09         return newCount;
10     }
11 }

lock()方法会对Lock实例对象进行加锁,因此所有对该对象调用lock()方法的线程都会被阻塞,直到该Lock对象的unlock()方法被调用。

这里有一个Lock类的简单实现:

查看源代码

打印帮助

01 public class Counter{
02 public class Lock{
03     private boolean isLocked = false;
04  
05     public synchronized void lock()
06         throws InterruptedException{
07         while(isLocked){
08             wait();
09         }
10         isLocked = true;
11     }
12  
13     public synchronized void unlock(){
14         isLocked = false;
15         notify();
16     }
17 }

注意其中的while(isLocked)循环,它又被叫做“自旋锁”。自旋锁以及wait()和notify()方法在线程通信这篇文章中有更加详细的介绍。当isLocked为true时,调用lock()的线程在wait()调用上阻塞等待。为防止该线程没有收到notify()调用也从wait()中返回(也称作虚假唤醒),这个线程会重新去检查isLocked条件以决定当前是否可以安全地继续执行还是需要重新保持等待,而不是认为线程被唤醒了就可以安全地继续执行了。如果isLocked为false,当前线程会退出while(isLocked)循环,并将isLocked设回true,让其它正在调用lock()方法的线程能够在Lock实例上加锁。

当线程完成了临界区(位于lock()和unlock()之间)中的代码,就会调用unlock()。执行unlock()会重新将isLocked设置为false,并且通知(唤醒)其中一个(若有的话)在lock()方法中调用了wait()函数而处于等待状态的线程。

锁的可重入性
Java中的synchronized同步块是可重入的。这意味着如果一个java线程进入了代码中的synchronized同步块,并因此获得了该同步块使用的同步对象对应的管程上的锁,那么这个线程可以进入由同一个管程对象所同步的另一个java代码块。下面是一个例子:

查看源代码

打印帮助

1 public class Reentrant{
2     public synchronized outer(){
3         inner();
4     }
5  
6     public synchronized inner(){
7         //do something
8     }
9 }

注意outer()和inner()都被声明为synchronized,这在Java中和synchronized(this)块等效。如果一个线程调用了outer(),在outer()里调用inner()就没有什么问题,因为这两个方法(代码块)都由同一个管程对象(”this”)所同步。如果一个线程已经拥有了一个管程对象上的锁,那么它就有权访问被这个管程对象同步的所有代码块。这就是可重入。线程可以进入任何一个它已经拥有的锁所同步着的代码块。

前面给出的锁实现不是可重入的。如果我们像下面这样重写Reentrant类,当线程调用outer()时,会在inner()方法的lock.lock()处阻塞住。

查看源代码

打印帮助

01 public class Reentrant2{
02     Lock lock = new Lock();
03  
04     public outer(){
05         lock.lock();
06         inner();
07         lock.unlock();
08     }
09  
10     public synchronized inner(){
11         lock.lock();
12         //do something
13         lock.unlock();
14     }
15 }

调用outer()的线程首先会锁住Lock实例,然后继续调用inner()。inner()方法中该线程将再一次尝试锁住Lock实例,结果该动作会失败(也就是说该线程会被阻塞),因为这个Lock实例已经在outer()方法中被锁住了。

两次lock()之间没有调用unlock(),第二次调用lock就会阻塞,看过lock()实现后,会发现原因很明显:

查看源代码

打印帮助

01 public class Lock{
02     boolean isLocked = false;
03  
04     public synchronized void lock()
05         throws InterruptedException{
06         while(isLocked){
07             wait();
08         }
09         isLocked = true;
10     }
11  
12     ...
13 }

一个线程是否被允许退出lock()方法是由while循环(自旋锁)中的条件决定的。当前的判断条件是只有当isLocked为false时lock操作才被允许,而没有考虑是哪个线程锁住了它。

为了让这个Lock类具有可重入性,我们需要对它做一点小的改动:

查看源代码

打印帮助

01 public class Lock{
02     boolean isLocked = false;
03     Thread  lockedBy = null;
04     int lockedCount = 0;
05  
06     public synchronized void lock()
07         throws InterruptedException{
08         Thread callingThread =
09             Thread.currentThread();
10         while(isLocked && lockedBy != callingThread){
11             wait();
12         }
13         isLocked = true;
14         lockedCount++;
15         lockedBy = callingThread;
16   }
17  
18     public synchronized void unlock(){
19         if(Thread.curentThread() ==
20             this.lockedBy){
21             lockedCount--;
22  
23             if(lockedCount == 0){
24                 isLocked = false;
25                 notify();
26             }
27         }
28     }
29  
30     ...
31 }

注意到现在的while循环(自旋锁)也考虑到了已锁住该Lock实例的线程。如果当前的锁对象没有被加锁(isLocked = false),或者当前调用线程已经对该Lock实例加了锁,那么while循环就不会被执行,调用lock()的线程就可以退出该方法(译者注:“被允许退出该方法”在当前语义下就是指不会调用wait()而导致阻塞)

除此之外,我们需要记录同一个线程重复对一个锁对象加锁的次数。否则,一次unblock()调用就会解除整个锁,即使当前锁已经被加锁过多次。在unlock()调用没有达到对应lock()调用的次数之前,我们不希望锁被解除。

现在这个Lock类就是可重入的了。

锁的公平性

Java的synchronized块并不保证尝试进入它们的线程的顺序。因此,如果多个线程不断竞争访问相同的synchronized同步块,就存在一种风险,其中一个或多个线程永远也得不到访问权 —— 也就是说访问权总是分配给了其它线程。这种情况被称作线程饥饿。为了避免这种问题,锁需要实现公平性。本文所展现的锁在内部是用synchronized同步块实现的,因此它们也不保证公平性。饥饿和公平中有更多关于该内容的讨论。

在finally语句中调用unlock()

如果用Lock来保护临界区,并且临界区有可能会抛出异常,那么在finally语句中调用unlock()就显得非常重要了。这样可以保证这个锁对象可以被解锁以便其它线程能继续对其加锁。以下是一个示例:

查看源代码

打印帮助

1 lock.lock();
2 try{
3     //do critical section code,
4     //which may throw exception
5 } finally {
6     lock.unlock();
7 }

这个简单的结构可以保证当临界区抛出异常时Lock对象可以被解锁。如果不是在finally语句中调用的unlock(),当临界区抛出异常时,Lock对象将永远停留在被锁住的状态,这会导致其它所有在该Lock对象上调用lock()的线程一直阻塞。 

时间: 2024-10-31 14:18:19

Java中的锁的相关文章

线程-懂java中lock锁的请进

问题描述 懂java中lock锁的请进 package thread; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantReadWriteLock; public class Foo { private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); private final Lock r = r

Java中无锁HashMap的原理与实现教程

在<Java出现HashMap的死循环的原因及解决方法>中,我们看到,java.util.HashMap并不能直接应用于多线程环境.对于多线程环境中应用HashMap,主要有以下几种选择: 使用线程安全的java.util.Hashtable作为替代. 使用java.util.Collections.synchronizedMap方法,将已有的HashMap对象包装为线程安全的. 使用java.util.concurrent.ConcurrentHashMap类作为替代,它具有非常好的性能.

Java中的读/写锁

原文链接 作者:Jakob Jenkov 译者:微凉 校对:丁一 相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些.假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源.但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存).这就需要一个读/写锁来解决这个问题

Java中的ReentrantLock和synchronized两种锁机制的对比

原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之一就是,它是第一个直接把跨平台线程模型和正规的内存模型集成到语言中的主流语言.核心类库包含一个 Thread 类,可以用它来构建.启动和操纵线程,Java 语言包括了跨线程传达并发性约束的构造 -- synchronized 和 volatile.在简化与平台无关的并发类的开发的同时,它决没有使并发

锁-JAVA中多线程读取成员变量的重复问题

问题描述 JAVA中多线程读取成员变量的重复问题 这是个模拟卖票的问题,使用一个对象实现Runnable接口建立四个线程,这个对象有100张票,四个进程同时卖,因为没使用锁,所以会出现负数票,但是为什么会出现相同的票呢?8号票卖了四次,是因为成员变量在if之后进栈保存了值?然后直接用这个num输出吗? 代码: class Ticket implements Runnable//extends Thread { private int num = 100 public void run()//这时

如何改善Java中锁的性能

我们努力为自己的产品所遇到的问题思考解决办法,但在这篇文章中我将给大家分享几种常用的技术,包括分离锁.并行数据结构.保护数据而非代码.缩小锁的作用范围,这几种技术可以使我们不使用任何工具来检测死锁. 锁不是问题的根源,锁之间的竞争才是 通常在多线程的代码中遇到性能方面的问题时,一般都会抱怨是锁的问题.毕竟锁会降低程序的运行速度和其较低的扩展性是众所周知的.因此,如果带着这种"常识"开始优化代码,其结果很有可能是在之后会出现讨人厌的并发问题. 因此,明白竞争锁和非竞争锁的不同是非常重要的

如何提高 Java 中锁的性能

两个月前向Plumbr公司引进线程死锁的检测之后,我们开始收到一些类似于这样的询问:"棒极了!现在我知道造成程序出现性能问题的原因了,但是接下来该怎么做呢?" 我们努力为自己的产品所遇到的问题思考解决办法,但在这篇文章中我将给大家分享几种常用的技术,包括分离锁.并行数据结构.保护数据而非代码.缩小锁的作用范围,这几种技术可以使我们不使用任何工具来检测死锁. 锁不是问题的根源,锁之间的竞争才是 通常在多线程的代码中遇到性能方面的问题时,一般都会抱怨是锁的问题.毕竟锁会降低程序的运行速度和

多线程 java 同步 锁-java中多线程访问同步问题

问题描述 java中多线程访问同步问题 public class SyschronizedSample{ private int value; public synchronized int get(){ return value;} public synchronized void set(int value) { this.value=value; } } 以上的代码中,要使得访问value时具有线程安全,所以在set和get方法中都加了synchronized同步语句,如果只在set方法前

Java中ThreadLocal的设计与使用

设计 早在Java 1.2推出之时,Java平台中就引入了一个新的支持:java.lang.ThreadLocal,给我们在编写多线程程序时提供了一种新的选择.使用这个工具类可以很简洁地编写出优美的多线程程序,虽然ThreadLocal非常有用,但是似乎现在了解它.使用它的朋友还不多. ThreadLocal是什么 ThreadLocal是什么呢?其实ThreadLocal并非是一个线程的本地实现版本,它并不是一个Thread,而是thread local variable(线程局部变量).也许