Red and Black
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 22250 Accepted: 12011
Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
'.' - a black tile
'#' - a red tile
'@' - a man on a black tile(appears exactly once in a data set)
The end of the input is indicated by a line consisting of two zeros.
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9
....#.
.....#
......
......
......
......
......
#@...#
.#..#.
11 9
.#.........
.#.#######.
.#.#.....#.
.#.#.###.#.
.#.#..@#.#.
.#.#####.#.
.#.......#.
.#########.
...........
11 6
..#..#..#..
..#..#..#..
..#..#..###
..#..#..#@.
..#..#..#..
..#..#..#..
7 7
..#.#..
..#.#..
###.###
...@...
###.###
..#.#..
..#.#..
0 0
Sample Output
45
59
6
13
Source
Japan 2004 Domestic
问题描述:有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上,只能向相邻的黑色瓷砖移动。请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
算法:设f(x,y)为从点(x,y)出发能够走过的黑瓷砖总数,则
f(x,y) = 1+f(x-1,y)+f(x+1,y)+f(x,y-1)+f(x,y+1)
这里需要注意,凡是走过的瓷砖不能够被重复走过
AC代码:
#include<stdio.h> #include<string.h> //方块四周加白色块,去掉边界判断, //使得递归统一终止于白色块 int Rank[22][22]; int FindBlack(int c,int l) { if(Rank[c][l]==2)//出口条件(防止重复走) return 0; else Rank[c][l]=2; return 1+FindBlack(c+1,l)+FindBlack(c-1,l)+FindBlack(c,l-1)+FindBlack(c,l+1);//递归函数 } int main() { int i,j,c,l,n,m; char x; while(scanf("%d %d",&m,&n),n!=0&&m!=0) { max=0; for(i=0;i<22;i++) for(j=0;j<22;j++) Rank[i][j]=2; for(i=1;i<=n;i++) { getchar(); for(j=1;j<=m;j++) { scanf("%c",&x); if(x=='.') Rank[i][j]=1; else { if(x=='#') Rank[i][j]=2; else { c=i;l=j; Rank[i][j]=1; } } } } printf("%d\n",FindBlack(c,l)); } return 0; }