C++中的类型转换static_cast、dynamic_cast、const_cast和reinterpret_cast总结_C 语言

前言

这篇文章总结的是C++中的类型转换,这些小的知识点,有的时候,自己不是很注意,但是在实际开发中确实经常使用的。俗话说的好,不懂自己写的代码的程序员,不是好的程序员;如果一个程序员对于自己写的代码都不懂,只是知道一昧的的去使用,终有一天,你会迷失你自己的。

C++中的类型转换分为两种:

1.隐式类型转换;
2.显式类型转换。

而对于隐式变换,就是标准的转换,在很多时候,不经意间就发生了,比如int类型和float类型相加时,int类型就会被隐式的转换位float类型,然后再进行相加运算。而关于隐式转换不是今天总结的重点,重点是显式转换。在标准C++中有四个类型转换符:static_cast、dynamic_cast、const_cast和reinterpret_cast;下面将对它们一一的进行总结。

static_cast

static_cast的转换格式:static_cast <type-id> (expression)

将expression转换为type-id类型,主要用于非多态类型之间的转换,不提供运行时的检查来确保转换的安全性。主要在以下几种场合中使用:

1.用于类层次结构中,基类和子类之间指针和引用的转换;
当进行上行转换,也就是把子类的指针或引用转换成父类表示,这种转换是安全的;
当进行下行转换,也就是把父类的指针或引用转换成子类表示,这种转换是不安全的,也需要程序员来保证;

2.用于基本数据类型之间的转换,如把int转换成char,把int转换成enum等等,这种转换的安全性需要程序员来保证;

3.把void指针转换成目标类型的指针,是及其不安全的;

注:static_cast不能转换掉expression的const、volatile和__unaligned属性。

dynamic_cast

dynamic_cast的转换格式:dynamic_cast <type-id> (expression)

将expression转换为type-id类型,type-id必须是类的指针、类的引用或者是void *;如果type-id是指针类型,那么expression也必须是一个指针;如果type-id是一个引用,那么expression也必须是一个引用。

dynamic_cast主要用于类层次间的上行转换和下行转换,还可以用于类之间的交叉转换。在类层次间进行上行转换时,dynamic_cast和static_cast的效果是一样的;在进行下行转换时,dynamic_cast具有类型检查的功能,比static_cast更安全。在多态类型之间的转换主要使用dynamic_cast,因为类型提供了运行时信息。下面我将分别在以下的几种场合下进行dynamic_cast的使用总结:

1.最简单的上行转换

比如B继承自A,B转换为A,进行上行转换时,是安全的,如下:

复制代码 代码如下:

#include <iostream>
using namespace std;
class A
{
     // ......
};
class B : public A
{
     // ......
};
int main()
{
     B *pB = new B;
     A *pA = dynamic_cast<A *>(pB); // Safe and will succeed
}

2.多重继承之间的上行转换

C继承自B,B继承自A,这种多重继承的关系;但是,关系很明确,使用dynamic_cast进行转换时,也是很简单的:

复制代码 代码如下:

class A
{
     // ......
};
class B : public A
{
     // ......
};
class C : public B
{
     // ......
};
int main()
{
     C *pC = new C;
     B *pB = dynamic_cast<B *>(pC); // OK
     A *pA = dynamic_cast<A *>(pC); // OK
}

而上述的转换,static_cast和dynamic_cast具有同样的效果。而这种上行转换,也被称为隐式转换;比如我们在定义变量时经常这么写:B *pB = new C;这和上面是一个道理的,只是多加了一个dynamic_cast转换符而已。

3.转换成void *

可以将类转换成void *,例如:

复制代码 代码如下:

class A
{
public:
     virtual void f(){}
     // ......
};
class B
{
public:
     virtual void f(){}
     // ......
};
int main()
{
     A *pA = new A;
     B *pB = new B;
     void *pV = dynamic_cast<void *>(pA); // pV points to an object of A
     pV = dynamic_cast<void *>(pB); // pV points to an object of B
}

但是,在类A和类B中必须包含虚函数,为什么呢?因为类中存在虚函数,就说明它有想让基类指针或引用指向派生类对象的情况,此时转换才有意义;由于运行时类型检查需要运行时类型信息,而这个信息存储在类的虚函数表中,只有定义了虚函数的类才有虚函数表。

4.如果expression是type-id的基类,使用dynamic_cast进行转换时,在运行时就会检查expression是否真正的指向一个type-id类型的对象,如果是,则能进行正确的转换,获得对应的值;否则返回NULL,如果是引用,则在运行时就会抛出异常;例如:

复制代码 代码如下:

class B
{
     virtual void f(){};
};
class D : public B
{
     virtual void f(){};
};
void main()
{
     B* pb = new D;   // unclear but ok
     B* pb2 = new B;
     D* pd = dynamic_cast<D*>(pb);   // ok: pb actually points to a D
     D* pd2 = dynamic_cast<D*>(pb2);   // pb2 points to a B not a D, now pd2 is NULL
}

这个就是下行转换,从基类指针转换到派生类指针。
对于一些复杂的继承关系来说,使用dynamic_cast进行转换是存在一些陷阱的;比如,有如下的一个结构:

D类型可以安全的转换成B和C类型,但是D类型要是直接转换成A类型呢?

复制代码 代码如下:

class A
{
     virtual void Func() = 0;
};
class B : public A
{
     void Func(){};
};
class C : public A
{
     void Func(){};
};
class D : public B, public C
{
     void Func(){}
};
int main()
{
     D *pD = new D;
     A *pA = dynamic_cast<A *>(pD); // You will get a pA which is NULL
}

如果进行上面的直接转,你将会得到一个NULL的pA指针;这是因为,B和C都继承了A,并且都实现了虚函数Func,导致在进行转换时,无法进行抉择应该向哪个A进行转换。正确的做法是:

复制代码 代码如下:

int main()
{
     D *pD = new D;
     B *pB = dynamic_cast<B *>(pD);
     A *pA = dynamic_cast<A *>(pB);
}

这就是我在实现QueryInterface时,得到IUnknown的指针时,使用的是*ppv = static_cast<IX *>(this);而不是*ppv = static_cast<IUnknown *>(this);

对于多重继承的情况,从派生类往父类的父类进行转时,需要特别注意;比如有下面这种情况:

现在,你拥有一个A类型的指针,它指向E实例,如何获得B类型的指针,指向E实例呢?如果直接进行转的话,就会出现编译器出现分歧,不知道是走E->C->B,还是走E->D->B。对于这种情况,我们就必须先将A类型的指针进行下行转换,获得E类型的指针,然后,在指定一条正确的路线进行上行转换。

上面就是对于dynamic_cast转换的一些细节知识点,特别是对于多重继承的情况,在实际项目中,很容易出现问题。

const_cast

const_cast的转换格式:const_cast <type-id> (expression)

const_cast用来将类型的const、volatile和__unaligned属性移除。常量指针被转换成非常量指针,并且仍然指向原来的对象;常量引用被转换成非常量引用,并且仍然引用原来的对象。看以下的代码例子:

复制代码 代码如下:

/*
** FileName     : ConstCastDemo
** Author       : Jelly Young
** Date         : 2013/12/27
** Description  : More information, please go to http://www.jb51.net
*/
#include <iostream>
using namespace std;
class CA
{
public:
     CA():m_iA(10){}
     int m_iA;
};
int main()
{
     const CA *pA = new CA;
     // pA->m_iA = 100; // Error
     CA *pB = const_cast<CA *>(pA);
     pB->m_iA = 100;
     // Now the pA and the pB points to the same object
     cout<<pA->m_iA<<endl;
     cout<<pB->m_iA<<endl;
     const CA &a = *pA;
     // a.m_iA = 200; // Error
     CA &b = const_cast<CA &>(a);
     pB->m_iA = 200;
     // Now the a and the b reference to the same object
     cout<<b.m_iA<<endl;
     cout<<a.m_iA<<endl;
}

注:你不能直接对非指针和非引用的变量使用const_cast操作符去直接移除它的const、volatile和__unaligned属性。

reinterpret_cast

reinterpret_cast的转换格式:reinterpret_cast <type-id> (expression)

允许将任何指针类型转换为其它的指针类型;听起来很强大,但是也很不靠谱。它主要用于将一种数据类型从一种类型转换为另一种类型。它可以将一个指针转换成一个整数,也可以将一个整数转换成一个指针,在实际开发中,先把一个指针转换成一个整数,在把该整数转换成原类型的指针,还可以得到原来的指针值;特别是开辟了系统全局的内存空间,需要在多个应用程序之间使用时,需要彼此共享,传递这个内存空间的指针时,就可以将指针转换成整数值,得到以后,再将整数值转换成指针,进行对应的操作。

总结

这篇博文总结了C++中的类型转换,重点总结了其中的显式转换。对于C++支持的这四种显式转换都进行了详细的描述。如果大家有什么补充的,或者我总结的有误的地方,请大家多多指教。

时间: 2024-08-01 21:05:06

C++中的类型转换static_cast、dynamic_cast、const_cast和reinterpret_cast总结_C 语言的相关文章

C++之static_cast, dynamic_cast, const_cast

转自:http://www.cnblogs.com/chio/archive/2007/07/18/822389.html 首先回顾一下C++类型转换: C++类型转换分为:隐式类型转换和显式类型转换 第1部分. 隐式类型转换 又称为"标准转换",包括以下几种情况:1) 算术转换(Arithmetic conversion) : 在混合类型的算术表达式中, 最宽的数据类型成为目标转换类型.   int ival = 3;double dval = 3.14159; ival + dva

static_cast, dynamic_cast, const_cast探讨

 首先回顾一下C++类型转换: C++类型转换分为:隐式类型转换和显式类型转换 第1部分. 隐式类型转换 何时发生隐式类型转换 在下面这些情况下,编译器会自动地转换运算对象的类型: 在大多数表达式中,比int类型小的整型值首先提升为较大的整数类型 在条件中,非布尔值转换为布尔类型 初始化过程中,初始值转换成变量的类型:在赋值语句中,右侧运算对象转换成左侧运算对象的类型 如果算术运算或关系运算的运算对象有多种类型,需要转换成同一种类型 函数调用时也会发生类型转换   又称为"标准转换",

C++中赋值运算符与逗号运算符的用法详解_C 语言

赋值运算符 赋值符号"="就是赋值运算符,它的作用是将一个数据赋给一个变量.如"a=3"的作用是执行一次赋值操作(或称赋值运算).把常量3赋给变量a.也可以将一个表达式的值赋给一个变量.赋值过程中的类型转换 如果赋值运算符两侧的类型不一致,但都是数值型或字符型时,在赋值时会自动进行类型转换. 1)  将浮点型数据(包括单.双精度)赋给整型变量时,舍弃其小数部分. 2)  将整型数据赋给浮点型变量时,数值不变,但以指数形式存储到变量中. 3) 将一个double型数据

C/C++中static,const,inline三种关键字详细总结_C 语言

一.关于staticstatic 是C++中很常用的修饰符,它被用来控制变量的存储方式和可见性,下面我将从 static 修饰符的产生原因.作用谈起,全面分析static 修饰符的实质. static 的两大作用: 一.控制存储方式 static被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间. 引出原因:函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,大家知道,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题: 如果想将函数中此变量的值保

详解C++编程中的主表达式与后缀表达式编写基础_C 语言

主表达式主表达式是更复杂的表达式的构造块.它们是文本.名称以及范围解析运算符 (::) 限定的名称.主表达式可以具有以下任一形式: literal this :: name name ( expression ) literal 是常量主表达式.其类型取决于其规范的形式. this 关键字是指向类对象的指针.它在非静态成员函数中可用,并指向为其调用函数的类的实例. this 关键字只能在类成员函数体的外部使用. this 指针的类型是未特别修改 this 指针的函数中的 type *const(

c++中的4种类型转化方式详细解析_C 语言

具体归纳如下: (1)reinterpret_cast该函数将一个类型的指针转换为另一个类型的指针.这种转换不用修改指针变量值存放格式(不改变指针变量值),只需在编译时重新解释指针的类型就可做到.reinterpret_cast 可以将指针值转换为一个整型数,但不能用于非指针类型的转换.例://基本类型指针的类型转换double d=9.2;double* pd = &d;int *pi = reinterpret_cast<int*>(pd);  //相当于int *pi = (in

C++中指针的数据类型和运算相关知识小结_C 语言

C++有关指针的数据类型和指针运算的小结 前面已用过一些指针运算(如p++,p+i等),现在把全部的指针运算列出如下. 1) 指针变量加/减 一个整数 例如:p++,p--,p+i,p-i,p+-i,p-=i等. C++规定,一个指针变量加/减一个整数是将该指针变量的原值(是一个地址)和它指向的变量所占用的内存单元字节数相加或相减.如p+i代表这样的地址计算:p+i*d,d为p所指向的变量单元所占用的字节数.这样才能保证p+i指向p下面的第i个元素. 2) 指针变量赋值 将一个变量地址赋给一个指

c语言中数组名a和&amp;amp;a详细介绍_C 语言

最近又把学习c语言提上日程上来了~~~先把我打算看的书都写下来吧,<C语言深度剖析>,<c和指针>系类,<c语言陷阱和缺陷> 先说说a和&a的区别(有三点,三个方向):1.是a和&a的本质,都是什么类型的.2.从2维数组的角度看.3.从指针运算的角度看. 声明:虽然数组名不是指针,但是用的很像指针,我们暂且把它叫做一个指针吧. 第一个问题:int a[10];  a ,&a和&a[0] 都是分别是什么?先说明a ,&a和&

VC中使用ADO开发数据库应用程序简明教程_C 语言

本文实例讲述了VC中使用ADO开发数据库应用程序的方法.分享给大家供大家参考,具体如下: 一.ADO概述 ADO是Microsoft为最新和最强大的数据访问范例 OLE DB 而设计的,是一个便于使用的应用程序层接口.ADO 使您能够编写应用程序以通过 OLE.DB 提供者访问和操作数据库服务器中的数据.ADO 最主要的优点是易于使用.速度快.内存支出少和磁盘遗迹小.ADO 在关键的应用方案中使用最少的网络流量,并且在前端和数据源之间使用最少的层数,所有这些都是为了提供轻量.高性能的接口.之所以