《R语言数据挖掘:实用项目解析》——第1章,第1.6节日期与时间格式化

1.6 日期与时间格式化
日期函数返回的是一个Date类,表示自1970年1月1日以来的天数。as.numeric()函数可用于创建一个值为自1/1/1970以来的天数的数值型变量。as.Date()的返回值是一个Date类的对象:

系统时间函数提取了日期和时区时间。当用as.Date函数转换系统时间并将其存储为R中的一个新对象时,我们发现那个对象的类是Date。weekdays函数返回星期名,如“星期一”或者“星期三”。months函数返回日期变量中的月名。quarters函数返回日期对象的季名。年份值也可利用substr()命令提取。示例如下:

如果数据集中给出的日期变量的格式不适用于进一步计算,可以用format函数将其格式化:

下表所示的多种选项均可基于用户需求传递给格式参数。

实际数据集包含的时间数据域有零售中的交易日期、健康服务中的访问日期和BFSI中的处理日期,还有包含至少一个时间元素的时间序列数据。要将日期变量纳入任何统计模型,都需要进行数据转换,比如在零售业场景中计算顾客的历史记录。数据转换可以使用上文提及的选项完成。

时间: 2024-09-22 11:23:02

《R语言数据挖掘:实用项目解析》——第1章,第1.6节日期与时间格式化的相关文章

R语言数据挖掘

数据分析与决策技术丛书 R语言数据挖掘 Learning Data Mining with R [哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel) 著 李洪成 许金炜 段力辉 译 图书在版编目(CIP)数据 R语言数据挖掘 / (哈)贝特·麦克哈贝尔(Bater Makhabel)著:李洪成,许金炜,段力辉译. -北京:机械工业出版社,2016.9 (数据分析与决策技术丛书) 书名原文:Learning Data Mining with R ISBN 978-7-111-54769-

《R语言数据挖掘》----第2章 频繁模式、关联规则和相关规则挖掘 2.1关联规则和关联模式概述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.1节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 第2章 频繁模式.关联规则和相关规则挖掘 本章中,我们将首先学习如何用R语言挖掘频繁模式.关联规则及相关规则.然后,我们将使用基准数据评估所有这些方法以便确定频繁模式和规则的兴趣度.本章内容主要涵盖以下几个主题: 关联规则和关联模式概述 购物篮分析 混合关联规则挖掘

《R语言数据挖掘》——2.2 购物篮分析

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.2 购物篮分析 购物篮分析(Market basket analysis)是用来挖掘消费者已购买的或保存在购物车中物品组合规律的方法.这个概念适用于不同的应用,特别是商店运营.源数据集是一个巨大的数据记录,购物篮分析的目的发现源数据集中不同项之间的关联关系. 2

《R语言数据挖掘》----1.3 数据挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.3节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.3 数据挖掘 数据挖掘就是在数据中发现一个模型,它也称为探索性数据分析,即从数据中发现有用的.有效的.意想不到的且可以理解的知识.有些目标与其他科学,如统计学.人工智能.机器学习和模式识别是相同的.在大多数情况下,数据挖掘通常被视为一个算法问题.聚类.分类.关联

《R语言数据挖掘》----1.6 网络数据挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.6节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.6 网络数据挖掘 网络挖掘的目的是从网络超链接结构.网页和使用数据来发现有用的信息或知识.网络是作为数据挖掘应用输入的最大数据源之一. 网络数据挖掘基于信息检索.机器学习(Machine Learning,ML).统计学.模式识别和数据挖掘.尽管很多数据挖掘方法

《R语言数据挖掘》----1.9 机器学习

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.9节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.9 机器学习 应用于机器学习算法的数据集称为训练集,它由一组成对的数据(x, y)构成,称为训练样本.成对的数据解释如下: x:这是一个值向量,通常称为特征向量.每个值或者特征,要么是分类变量(这些值来自一组离散值,比如{S, M, L}),要么是数值型. y:

《R语言数据挖掘》----1.13 数据降维

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.13节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.13 数据降维 在分析复杂的多变量数据集时,降低维度往往是必要的,因为这样的数据集总是以高维形式呈现.因此,举例来说,从大量变量来建模的问题和基于定性数据多维分析的数据挖掘任务.同样,有很多方法可以用来对定性数据进行数据降维. 降低维度的目标就是通过两个或者多

《R语言数据挖掘》----1.10 数据属性与描述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.10节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.10 数据属性与描述 属性(attribute)是代表数据对象的某些特征.特性或者维度的字段. 在大多数情况下,数据可以用矩阵建模或者以矩阵形式表示,其中列表示数据属性,行表示数据集中的某些数据记录.对于其他情况,数据不能用矩阵表示,比如文本.时间序列.图像.

《R语言数据挖掘》----1.2 数据源

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.2 数据源 数据充当数据挖掘系统的输入,因此数据存储库是非常重要的.在企业环境中,数据库和日志文件是常见来源:在网络数据挖掘中,网页是数据的来源:连续地从各种传感器中提取数据也是典型的数据源. 这里有一些免费的在线数据源十分有助于学习数据挖掘: 频繁项集挖掘数据