python数据结构树和二叉树简介_python

一、树的定义

树形结构是一类重要的非线性结构。树形结构是结点之间有分支,并具有层次关系的结构。它非常类似于自然界中的树。
树的递归定义:
树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:
(1)有且仅有一个特定的称为根(Root)的结点;
(2)其余的结点可分为m(m≥0)个互不相交的子集Tl,T2,…,Tm,其中每个子集本身又是一棵树,并称其为根的子树(Subree)。

二、二叉树的定义

二叉树是由n(n≥0)个结点组成的有限集合、每个结点最多有两个子树的有序树。它或者是空集,或者是由一个根和称为左、右子树的两个不相交的二叉树组成。
特点:
(1)二叉树是有序树,即使只有一个子树,也必须区分左、右子树;
(2)二叉树的每个结点的度不能大于2,只能取0、1、2三者之一;
(3)二叉树中所有结点的形态有5种:空结点、无左右子树的结点、只有左子树的结点、只有右子树的结点和具有左右子树的结点。

三、二叉树的性质

性质1:二叉树的第i层上最多有个结点。
性质2:深度为h的二叉树上最多有-1个结点。
性质3:具有n个结点的二叉树的高度不小于的最大整数。
性质4:任意一棵二叉树中,如果叶子结点的个数为n0,度为2的结点的个数为n2,则必然有n0=n2+1。
满二叉树:若深度为h的二叉树,恰好具有-1个结点,则称为满二叉树。
完全二叉树:若一棵具有n个结点的二叉树的逻辑结构与满二叉树的前n个结点的逻辑结构完全相同,则称该二叉树为完全二叉树
扩充二叉树:除叶子结点外,其余结点都必须有两个孩子的二叉树。

四、二叉树的存储结构

二叉树的存储结构有顺序存储结构、链式存储结构
顺序存储:结构采用一维数组存储的。根据二叉树的性质6可计算出双亲结点、左右孩子结点的下标。因此满二叉树、完全二叉树的存储可采用一维数组,把结点按从上到下、从左到右的顺序存放在数组中,结点之间的关系可由性质6的公式计算得到。
链式存储:结构采用链表存储二叉树中的数据元素,用链建立二叉树中结点之间的关系。二叉树最常用的链式存储结构是二叉链,每个结点包含三个域,分别是数据元素域data、左孩子链域lChild和右孩子链域rChild。与单链表带头结点和不带头结点的两种情况相似,二叉链存储结构的二叉树也有带头结点和不带头结点两种

五、二叉树的操作

python数据结构之二叉树的建立实例

python数据结构之二叉树的遍历实例

python数据结构之二叉树的统计与转换实例

时间: 2025-01-21 02:57:37

python数据结构树和二叉树简介_python的相关文章

Python数据结构之Array用法实例_python

本文实例讲述了python数据结构之Array用法,分享给大家供大家参考.具体方法如下: import ctypes class Array: def __init__(self, size): assert size > 0, "Array size must be > 0 " self._size = size pyArrayType = ctypes.py_object * size self._elements = pyArrayType() self.clear(

Python Trie树实现字典排序_python

一般语言都提供了按字典排序的API,比如跟微信公众平台对接时就需要用到字典排序.按字典排序有很多种算法,最容易想到的就是字符串搜索的方式,但这种方式实现起来很麻烦,性能也不太好.Trie树是一种很常用的树结构,它被广泛用于各个方面,比如字符串检索.中文分词.求字符串最长公共前缀和字典排序等等,而且在输入法中也能看到Trie树的身影. 什么是Trie树 Trie树通常又称为字典树.单词查找树或前缀树,是一种用于快速检索的多叉树结构.如图数字的字典是一个10叉树: 同理小写英文字母或大写英文字母的字

数据结构:树和二叉树定义和术语

1.树的对象 具有相同特性的数据元素的集合 2.关系 如果没有对象叫做空树 否则: 在存在唯一的成为根的数据元素root 当元素个数大于1的时候,其他节点可以 分为互不相交的树,成为根root的子树         a  b      c    d e f     g             i   j         b c d 叫做a为root节点的子树 e f 叫做以b为root节点的子树 以此类推  3.相关术语 结点:数据元素+若干指向子树的分支       如上数据元素a+指向子树b

Python数据结构

前言 Python作为一种弱类型编程语言,其数据类型较之于C/C++无论是在数据的存储还是调用都有着很大的区别.其特有的字典类型更是一个非常经典且功能强大的数据类型.下面一起来学习Python的数据类型,期间也会穿插一些Python的实用技巧. 软件环境 系统  Ubuntukylin 14.04 软件  Python 4.7.6 IPython 4.0.0 Python数据结构树状图 基本数据类型  数值型  – 整型  – 浮点型  – 复数 布尔型 字符型 组合数据类型  序列  – 列表

数据结构实践项目——树和二叉树(1)

本文针对[数据结构基础系列(6):树和二叉树]第1-6, 8-10课时 1 树结构导学 2 树的基本概念 3 树的基本术语 4 树的性质 5 树的存储结构 6 二叉树概念和性质 8 二叉树的存储结构 9 二叉树的基本运算及其实现 10 二叉树的遍历 [项目1 - 二叉树算法库] 定义二叉树的链式存储结构,实现其基本运算,并完成测试. 要求: 1.头文件btree.h中定义数据结构并声明用于完成基本运算的函数.对应基本运算的函数包括: void CreateBTNode(BTNode *&b,ch

数据结构实践项目——树和二叉树(2)

本文针对数据结构基础系列(6):树和二叉树第7, 11-15课时 7 二叉树与树.森林之间的转换 11 二叉树遍历非递归算法 12 层次遍历算法 13 二叉树的构造 14 线索二叉树 15 哈夫曼树 [项目1 - 二叉树算法验证] 运行并重复测试教学内容中涉及的算法.改变测试数据进行重复测试的意义在于,可以从更多角度体会算法,以达到逐渐掌握算法的程度.使用你的测试数据,并展示测试结果,观察运行结果,以此来领会算法. (1)层次遍历算法的验证 [参考链接] (2)二叉树构造算法的验证 [参考链接]

数据结构C#版笔记--树与二叉树

图1 上图描述的数据结构就是"树",其中最上面那个圈圈A称之为根节点(root),其它圈圈称为节点(node),当然root可以认为是node的特例. 树跟之前学习过的线性结构不同,它是一对多的非线性结构,具有二个基本特点: 1.根节点(root)没有前驱节点,除root之外的所有节点有且只有一个前驱节点2.树中的所有节点都可以有0个或多个后继节点. 所以下面这些歪瓜咧枣,不能算是树: 图2 下是是一些烦人但是很重要的术语:  1.结点(Node):表示树中的数据元素,由数据项和数据元

每周一道数据结构(三)树、二叉树、最优二叉树

树 树形结构是一类非常重要的非线性结构,它可以很好地描述客观世界中广泛存在的具有分支关系或层次特性的对象,因此在计算机领域里有着广泛应用,如操作系统中的文件管理.编译程序中的语法结构和数据库系统信息组织形式等.   树的相关定义 节点的度:一个节点含有的子树的个数称为该节点的度: 树的度:一棵树中,最大的节点的度称为树的度: 叶节点或终端节点:度为零的节点: 非终端节点或分支节点:度不为零的节点: 双亲节点或父节点:若一个结点含有子节点,则这个节点称为其子节点的父节点: 孩子节点或子节点:一个节

数据结构教程 第二十一课 树、二叉树定义及术语

教学目的: 掌握树.二叉树的基本概念和术语,二叉树的性质 教学重点: 二叉树的定义.二叉树的性质 教学难点: 二叉树的性质 授课内容: 一.树的定义: 树是n(n>=0)个结点的有限集.在任意一棵非空树中: (1)有且仅有一个特定的称为根的结点: (2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...Tm,其中每一个集合本身又是一棵树,并且称为根的子树. 二.树的基本概念: 树的结点包含一个数据元素及若干指向其子树的分支. 结点拥有的子树数称为结点的度. 度为0