论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks

Pedestrian Detection aided by Deep Learning Semantic Tasks

CVPR 2015

本文考虑将语义任务(即:行人属性场景属性)和行人检测相结合,以语义信息协助进行行人检测。先来看一下大致的检测结果(TA-CNN为本文检测结果):

可以看出,由于有了属性信息的协助,其行人检测的精确度有了较大的提升。具体网络架构如下图所示:

首先从各个数据集上进行行人数据集的收集和整理,即:从Caltech上收集行人正样本和负样本,然后从其他数据集上收集 hard negative samples。有了这些行人图像的patch就可以进行行人属性和行人检测的多任务共同学习的框架了。本文提出的TA-CNN框架,是简化版的AlexNet,去掉了一层Conv和fc,加入了 SPV(Structure Projection Vector),其具体计算方法见论文。

其中,论文中考虑到的行人属性和场景属性主要有以下几种:

 谈一下我对这篇文章的总体感受:

  本文将属性信息结合到行人检测中,充分利用语义信息排除错误信息的干扰。以ACF行人检测的结果为基准,进行是否是行人的判断,实际上这是将行人检测问题转化为了图像分类问题,而不是像FCN那样进行行人的定位。这一点我觉得挺扯淡的。文中设计了新的联合训练的loss function,并且花了大量篇幅进行了推导和展示。我一直觉得这是一个multi-task的工作,仔细看看标题:人家是用属性信息协助行人检测。额、、无力吐槽、、

  

 

 

 

 

 

 

 

 

 

 

 

时间: 2024-10-24 00:49:34

论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks的相关文章

论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

Asynchronous Methods for Deep Reinforcement Learning ICML 2016   深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-

论文笔记之:Playing Atari with Deep Reinforcement Learning

  Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013   Abstract: 本文提出了一种深度学习方法,利用强化学习的方法,直接从高维的感知输入中学习控制策略.模型是一个卷积神经网络,利用 Q-learning的一个变种来进行训练,输入是原始像素,输出是预测将来的奖励的 value function.将此方法应用到 Atari 2600 games 上来,进行测试,发现在所有游戏中都比之前的方法有效

论文笔记之:Learning Cross-Modal Deep Representations for Robust Pedestrian Detection

  Learning Cross-Modal Deep Representations for Robust Pedestrian Detection 2017-04-11  19:40:22    Motivation: 本文主要是考虑了在光照极端恶劣的情况下,如何充分的利用 thermal data 进行协助学习提升 可见光图像的 特征表达能力,而借鉴了 ICCV 2015 年的一个文章,称为:监督迁移的方法,以一种模态的特征为 label,以监督学习的方式实现无监督学习.说到这里可能比较让

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53    这篇文章的 Motivation 来自于 MDNet:    本文所提出的 framework 为:                             

论文笔记: Dual Deep Network for Visual Tracking

论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型:  2. Dual network 分别处理两路不同的网络,使得前景和背景更加具

Video Frame Synthesis using Deep Voxel Flow 论文笔记

  Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv    摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索.这个问题是非常具有挑战性的,因为,视频的外观和运动是非常复杂的.传统 optical-flow-based solutions 当 flow estimation 失败的时候,就变得非常困难:而最新的基于神经网络的方法直接预测像素值,经常产生模糊的结果. 于是,在此motivation的基

论文阅读之:Is Faster R-CNN Doing Well for Pedestrian Detection?

  Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV 2016   Liliang Zhang & Kaiming He     原文链接:http://arxiv.org/pdf/1607.07032v2.pdf Code : https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian     摘要:行人检测被人 argue 说是特定课题,而不是general 的物体检测

论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

  Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper    摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function.  这个设计的主要特色在于 generalize learning across act

笔记:Wide &amp; Deep Learning for Recommender Systems

笔记:Wide & Deep Learning for Recommender Systems 前两天自从看到一张图后: 就一直想读一下相关论文,这两天终于有时间把论文看了一下,就是这篇Wide & Deep Learning for Recommender Systems 首先简介,主要说了什么是Wide和Deep: Wide就是:wide是指高维特征+特征组合的LR, 原文Generalized linear models with nonlinear feature transfor