[再寄小读者之数学篇](2014-06-03 一个积分的计算)

试计算 $\dps{\int_0^{\cfrac{\pi}{2}}\cfrac{x^2}{\sin^2x}\rd x}$.   

解答: $$\beex \bea \int_0^{\cfrac{\pi}{2}}\cfrac{x^2}{\sin^2x}\rd x &=-\int_0^{\cfrac{\pi}{2}} x^2\rd \cot x\\ &=2\int_0^{\cfrac{\pi}{2}} x \cot x\rd x\\ &=2\int_0^{\cfrac{\pi}{2}} x\rd \ln \sin x\\ &=-2\int_0^{\cfrac{\pi}{2}} \ln \sin x\rd x. \eea \eeex$$ 往求 $$\beex \bea \int_0^{\cfrac{\pi}{2}} \ln \sin x\rd x &=\int_0^{\cfrac{\pi}{2}} \ln \cos x\rd x\quad\sex{\cfrac{\pi}{2}-x\leftrightsquigarrow x}\\ &=\cfrac{1}{2}\int_0^{\cfrac{\pi}{2}} \ln \sin x+\ln \cos x\rd x\\ &=\cfrac{1}{2}\int_0^{\cfrac{\pi}{2}} \ln \sin 2x\rd x-\cfrac{\pi}{4}\ln 2\\ &=\cfrac{1}{4}\int_0^{\cfrac{\pi}{2}} \ln \sin 2x\rd x-\cfrac{\pi}{4}\ln 2\quad\sex{2x\leftrightsquigarrow x}\\ &=\cfrac{1}{4}\sez{ \int_0^{\cfrac{\pi}{2}} \ln \sin x\rd x+\int_0^{\cfrac{\pi}{2}} \ln \cos x\rd x }-\cfrac{\pi}{4}\ln 2\\&\quad\sex{x-\cfrac{\pi}{2}\leftrightsquigarrow x}\\ &=\cfrac{1}{2}\int_0^{\cfrac{\pi}{2}} \ln \sin x-\cfrac{\pi}{4}\ln 2. \eea \eeex$$ 于是 $$\bex \int_0^{\cfrac{\pi}{2}} \ln\sin x\rd x=-\cfrac{\pi}{2}\ln 2,\quad \int_0^{\cfrac{\pi}{2}} \cfrac{x^2}{\sin^2x}\rd x=\pi \ln 2. \eex$$

时间: 2024-09-23 20:28:11

[再寄小读者之数学篇](2014-06-03 一个积分的计算)的相关文章

再寄小读者之数学篇[2014.01.01-2014.06.30]

[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛) 设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数.   [再寄小读者之数学篇](2014-06-27 向量公式: The Hall term) $$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cd

再寄小读者之数学篇[2014.07.01-2014.12.31]

[再寄小读者之数学篇](2014-12-24 乘积型不等式)   [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)  试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$    [再寄小读者之数学篇](2014-11-27 华中科技大学2014年高等代数考研试题

[再寄小读者之数学篇](2014-05-29 单调函数的一个充分条件)

(from D.Y. Peng) 设 $f$ 为区间 $I$ 上的可微函数, 满足微分方程 $$\bex f'(x)=g(f(x)),\quad x\in I, \eex$$ 其中 $g$ 是在 $f$ 的值域上有定义的连续函数. 证明: $f$ 一定是单调函数. 

[再寄小读者之数学篇](2014-06-19 两个分部积分)

For $2<q<\infty$, $$\beex \bea -\int \lap \bbu \cdot |\bbu|^{q-2}\bbu &=\int \p_iu_j \p_i\sex{|\bbu|^{q-2}u_j}\\ &=\int \p_iu_j \p_i|\bbu|^{q-2}u_j+\int \p_iu_j|\bbu|^{q-2}\p_iu_j\\ &=\cfrac{1}{2}\int \p_i|\bbu|^2\cdot \p_i|\bbu|^{q-2} +

[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数)

设 $f$ 为 $[0,1]$ 上的连续非负函数, 找出满足条件 $$\bex \int_0^1 f(x)\rd x=1,\quad \int_0^1 xf(x)\rd x=a,\quad \int_0^1 x^2f(x)\rd x=a^2 \eex$$ 的所有 $f$, 其中 $a$ 为给定实数.     解答: 由 $$\beex \bea a^2&=\sex{\int_0^1 xf(x)\rd x}^2\\ &=\sex{\int_0^1 \sqrt{f(x)}\cdot x\sqr

[再寄小读者之数学篇](2014-11-26 幂等矩阵的一个充分条件)

若 $A\in \bbR^{m\times n}$ 列满秩, 则 $A(A^TA)^{-1}A^T$ 是幂等矩阵, 其特征值为 $1$ 或 $0$, 且存在正交阵 $Q$, 使得 $$\bex Q^T[A(A^TA)^{-1}A^T]Q=\sex{E_n\atop 0}. \eex$$

再寄小读者之数学篇

此栏目主要用于回答一些同学.学生.网友的数学问题, 自己整理的一些内容. 有些已给出解答, 有一些没有 (可能懒得写, 也可能确实不知道), 如您知道, 欢迎告知 (可以是tex编辑, mathtype编辑, word编辑, pdf编辑, 可写上您的大名或者笔名, 我会放到相应位置去). 如您需要 pdf 文件, 请通过支付宝购买 (打款至 zhangzujin361@163.com,在付款说明中注明你所需要的哪一期), 一般1-2日内发货 (节假日除外), 价格为: ($5\times 2=1

[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解)

(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解) 设 $f(x)$ 为 ${\bf A}$ 的特征多项式, 且存在互素的次数分别为 $p,q$ 的多项式 $g(x),h(x)$ 使得 $f(x)=g(x)h(x)$. 求证: $$\bex \rank g({\bf A})=q,\quad \rank h({\bf A})=p. \eex$$ 证明: 设 $$\bex g(x)=\prod_{i=1}^s (\lm

[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)

设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$    解答: 用 $-f$ 代替 $f$, 而不妨设 $$\bex \exists\ c\in (0,1),\st 0<f(c)=\max_{x\in [0,1]}|f(x)|

[再寄小读者之数学篇](2014-04-20 [浙江大学 2014 年高等代数考研试题] 相似于对角阵的一个充分条件)

设 ${\bf X},{\bf Y}$ 分别为 $m\times n$ 与 $n\times m$ 阵, 且 $$\bex {\bf Y}{\bf X}={\bf E}_n,\quad {\bf A}={\bf E}_m+{\bf X}{\bf Y}. \eex$$ 证明: ${\bf A}$ 相似于对角阵. 证明: 由 ${\bf Y}{\bf X}={\bf E}_n$ 知 $$\bex n=\rank({\bf Y}{\bf X})\leq \min\sed{\rank({\bf Y}),