Data Scientist
- Orange
Orange 是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了 Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++
和 Python开发,它的图形库是由跨平台的Qt框架开发。 - Orange 是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了
Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++ 和 Python开发,它的图形库是由跨平台的Qt框架开发。
- RapidMiner
RapidMiner, 以前叫 YALE (Yet Another Learning Environment), 其是一个给机器学习和数据挖掘和分析的试验环境,同时用于研究了真实世界数据挖掘。它提供的实验由大量的算子组成,而这些算子由详细的XML
文件记录,并被RapidMiner图形化的用户接口表现出来。RapidMiner为主要的机器学习过程提供了超过500算子,并且,其结合了学习方案 和Weka学习环境的属性评估器。它是一个独立的工具可以用来做数据分析,同样也是一个数据挖掘引擎可以用来集成到你的产品中。(15年使用较多)
- RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
功能和特点
免费提供数据挖掘技术和库
100%用Java代码(可运行在操作系统)
数据挖掘过程简单,强大和直观
内部XML保证了标准化的格式来表示交换数据挖掘过程
可以用简单脚本语言自动进行大规模进程
多层次的数据视图,确保有效和透明的数据
图形用户界面的互动原型
命令行(批处理模式)自动大规模应用
Java API(应用编程接口)
简单的插件和推广机制
强大的可视化引擎,许多尖端的高维数据的可视化建模
400多个数据挖掘运营商支持
耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘
- Weka
Weka 由Java开发的 Weka (Waikato Environment for Knowledge Analysis) 是一个知名机器学机软件,其支持几种经典的数据挖掘任务,显著的数据预处理,集群,分类,回归,虚拟化,以及功能选择。其技术基于假设数据是以一种单个文
件或关联的,在那里,每个数据点都被许多属性标注。 Weka 使用Java的数据库链接能力可以访问SQL数据库,并可以处理一个数据库的查询结果。它主要的用户接品是Explorer,也同样支持相同功能的命令 行,或是一种基于组件的知识流接口。
- WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),同时weka也是新西兰的一种鸟名,而WEKA的主要开发者来自新西兰。
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以看一看weka的接口文档。在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
2005年8月,在第11届ACM SIGKDD国际会议上,怀卡托大学的Weka小组荣获了数据挖掘和知识探索领域的最高服务奖,Weka系统得到了广泛的认可,被誉为数据挖掘和机器学习 历史上的里程碑,是现今最完备的数据挖掘工具之一(已有11年的发展历史)。Weka的每月下载次数已超过万次。
-
JHepWork
为科学家,工程师和学生所设计的 jHepWork 是一个免费的开源数据分析框架,其主要是用开源库来创建 一个数据分析环境,并提供了丰富的用户接口,以此来和那些收费的的软件竞争。它主要是为了科学计算用的二维和三维的制图,并包含了用Java实现的数学科
学库,随机数,和其它的数据挖掘算法。 jHepWork 是基于一个高级的编程语言 Jython,当然,Java代码同样可以用来调用 jHepWork 的数学和图形库。 - jHepWork是一套功能完整的面向对象科学数据分析框架。 Jython宏是用来展示一维和二维直方图的数据。该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
- KNIME
KNIME (Konstanz Information Miner) 是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。它给了用户有能力以可视化的方式创建数据流或数据通道,可选择性
地运行一些或全部的分析步骤,并以后面研究结果,模型 以及 可交互的视图。 KNIME 由Java写成,其基于 Eclipse 并通过插件的方式来提供更多的功能。通过以插件的文件,用户可以为文件,图片,和时间序列加入处理模块,并可以集成到其它各种各样的开源项目中,比如:R 语言,Weka, Chemistry Development Kit, 和 LibSVM. - KNIME (Konstanz Information Miner) 是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。它给了用户有能力以可视化的方式创建数据流或数据通道,可选择性地运行一些或全部的分析步骤,并以后面研究结果,模型
以及 可交互的视图。 KNIME 由Java写成,其基于 Eclipse 并通过插件的方式来提供更多的功能。通过以插件的文件,用户可以为文件,图片,和时间序列加入处理模块,并可以集成到其它各种各样的开源项目中,比如:R
语言,Weka,
Chemistry Development Kit, 和 LibSVM.
时间: 2024-11-01 07:29:17