WebGL 规范(WebGL Specification)

WebGL 规范(WebGL Specification)

太阳火神的美丽人生 (http://blog.csdn.net/opengl_es)

本文遵循“署名-非商业用途-保持一致”创作公用协议

转载请保留此句:太阳火神的美丽人生 -  本博客专注于 敏捷开发及移动和物联设备研究:iOS、Android、Html5、Arduino、pcDuino,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。

WebGL 规范
WebGL Specification

1.0.2 版,发布于 2013 年 03 月 01 日
Version 1.0.2, 01 March 2013

本版
This version:
https://www.khronos.org/registry/webgl/specs/1.0.2/ 
WebIDL: https://www.khronos.org/registry/webgl/specs/1.0.2/webgl.idl
最新版
Latest version:
https://www.khronos.org/registry/webgl/specs/latest/ 
WebIDL: https://www.khronos.org/registry/webgl/specs/latest/webgl.idl
上一版
Previous version:
https://www.khronos.org/registry/webgl/specs/1.0.1/ 
WebIDL: https://www.khronos.org/registry/webgl/specs/1.0.1/webgl.idl
编辑人
Editor:
Chris Marrin (Apple Inc.)

版权归 Khronos 集团所有
Copyright 2013 Khronos Group


摘要
Abstract

本规范描述一个附加的渲染上下文和支持对象,用于 HTML 5 canvas 元素 [CANVAS]。该上下文允许使用符合 OpenGL ES 2.0 API 的一套 API 进行渲染。
This specification describes an additional rendering context and support objects for the HTML 5 canvas element [CANVAS]. This context allows rendering using an API that conforms closely to the OpenGL ES 2.0 API.

本文档状态
Status of this document

欢迎通过归档的 WebGL 邮件列表 public_webgl@khronos.org (查看 指导) 展开对本文档的公开讨论。
Public discussion of this specification is welcome on the (archived) WebGL mailing list public_webgl@khronos.org (see instructions).

内容列表
Table of contents

1 Introduction

WebGL is an immediate mode 3D rendering API designed for the web. It is derived from OpenGL ES 2.0, and provides similar rendering functionality, but in an HTML context. WebGL is designed as a rendering context for the HTML Canvas element. The HTML Canvas provides a destination for programmatic rendering in web pages, and allows for performing that rendering using different rendering APIs. The only such interface described as part of the Canvas specification is the 2D canvas rendering context, CanvasRenderingContext2D. This document describes another such interface, WebGLRenderingContext, which presents the WebGL API.

The immediate mode nature of the API is a divergence from most web APIs. Given the many use cases of 3D graphics, WebGL chooses the approach of providing flexible primitives that can be applied to any use case. Libraries can provide an API on top of WebGL that is more tailored to specific areas, thus adding a convenience layer to WebGL that can accelerate and simplify development. However, because of its OpenGL ES 2.0 heritage, it should be straightforward for developers familiar with modern desktop OpenGL or OpenGL ES 2.0 development to transition to WebGL development.

1.1 Conventions

Many functions described in this document contain links to OpenGL ES man pages. While every effort is made to make these pages match the OpenGL ES 2.0 specification[GLES20], they may contain errors. In the case of a contradiction, the OpenGL ES 2.0 specification is the final authority.

The remaining sections of this document are intended to be read in conjunction with the OpenGL ES 2.0 specification (2.0.25 at the time of this writing, available from theKhronos OpenGL ES API Registry). Unless otherwise specified, the behavior of each method is defined by the OpenGL ES 2.0 specification. This specification may diverge from OpenGL ES 2.0 in order to ensure interoperability or security, often defining areas that OpenGL ES 2.0 leaves implementation-defined. These differences are summarized in the Differences Between WebGL and OpenGL ES 2.0 section.

2 Context Creation and Drawing Buffer Presentation

Before using the WebGL API, the author must obtain a WebGLRenderingContext object for a given HTMLCanvasElement [CANVAS] as described below. This object is used to manage OpenGL state and render to the drawing buffer, which must be created at the time of context creation.

2.1 Context Creation

Each WebGLRenderingContext has an associated canvas, set upon creation, which is a canvas [CANVAS].

Each WebGLRenderingContext has context creation parameters, set upon creation, in a WebGLContextAttributes object.

Each WebGLRenderingContext has actual context parameters, set each time the drawing buffer is created, in a WebGLContextAttributes object.

Each WebGLRenderingContext has a webgl context lost flag, which is initially unset.

When the getContext() method of a canvas element is to return a new object for the contextId webgl [CANVASCONTEXTS], the user agent must perform the following steps:

  1.  Create a new WebGLRenderingContext object, context.
  2.  Let context's canvas be the canvas the getContext() method is associated with.
  3.  Create a new WebGLContextAttributes object, contextAttributes.
  4.  If getContext() was invoked with a second argument, options, set the attributes of contextAttributes from those specified in options.
  5.  Create a drawing buffer using the settings specified in contextAttributes, and associate the drawing buffer with context.
  6.  If drawing buffer creation failed, perform the following steps:
    1.  Fire a WebGL context creation error at canvas.
    2.  Return null and terminate these steps.
  7.  Set the attributes of contextAttributes based on the properties of the newly created drawing buffer.
  8.  Set context's context creation parameters to contextAttributes.
  9.  Return context.

2.2 The Drawing Buffer

The drawing buffer into which the API calls are rendered shall be defined upon creation of the WebGLRenderingContext object. The following description defines how tocreate a drawing buffer.

The table below shows all the buffers which make up the drawing buffer, along with their minimum sizes and whether they are defined or not by default. The size of this drawing buffer shall be determined by the width and height attributes of the HTMLCanvasElement. The table below also shows the value to which these buffers shall be cleared when first created, when the size is changed, or after presentation when the preserveDrawingBuffer context creation attribute is false.

Buffer Clear value Minimum size Defined by default?
Color (0, 0, 0, 0) 8 bits per component yes
Depth 1.0 16 bit integer yes
Stencil 0 8 bits no

If the requested width or height cannot be satisfied, either when the drawing buffer is first created or when the width and height attributes of theHTMLCanvasElement are changed, a drawing buffer with smaller dimensions shall be created. The dimensions actually used are implementation dependent and there is no guarantee that a buffer with the same aspect ratio will be created. The actual drawing buffer size can be obtained from the drawingBufferWidth anddrawingBufferHeight attributes.

A WebGL implementation must not perform any automatic scaling of the size of the drawing buffer on high-definition displays. The context's drawingBufferWidth anddrawingBufferHeight must match the canvas's width and height attributes as closely as possible, modulo implementation-dependent constraints.

The constraint above does not change the amount of space the canvas element consumes on the web page, even on a high-definition display. The canvas's intrinsic dimensions [CANVAS] equal the size of its coordinate space, with the numbers interpreted in CSS pixels, and CSS pixels are resolution-independent [CSS].

A WebGL application can achieve a 1:1 ratio between drawing buffer pixels and on-screen pixels on high-definition displays by examining properties likewindow.devicePixelRatio, scaling the canvas's width and height by that factor, and setting its CSS width and height to the original width and height. An application can simulate the effect of running on a higher-resolution display simply by scaling up the canvas's width and height properties.

The optional WebGLContextAttributes object may be used to change whether or not the buffers are defined. It can also be used to define whether the color buffer will include an alpha channel. If defined, the alpha channel is used by the HTML compositor to combine the color buffer with the rest of the page. The WebGLContextAttributes object is only used on the first call to getContext. No facility is provided to change the attributes of the drawing buffer after its creation.

The depthstencil and antialias attributes, when set to true, are requests, not requirements. The WebGL implementation should make a best effort to honor them. When any of these attributes is set to false, however, the WebGL implementation must not provide the associated functionality. Combinations of attributes not supported by the WebGL implementation or graphics hardware shall not cause a failure to create a WebGLRenderingContext. The actual context parameters are set to the attributes of the created drawing buffer. The alphapremultipliedAlpha and preserveDrawingBuffer attributes must be obeyed by the WebGL implementation.

WebGL presents its drawing buffer to the HTML page compositor immediately before a compositing operation, but only if cleardrawArrays or drawElements have been called since the last compositing operation, while the drawing buffer is the currently bound framebuffer. Before the drawing buffer is presented for compositing the implementation shall ensure that all rendering operations have been flushed to the drawing buffer. By default, after compositing the contents of the drawing buffer shall be cleared to their default values, as shown in the table above.

This default behavior can be changed by setting the preserveDrawingBuffer attribute of the WebGLContextAttributes object. If this flag is true, the contents of the drawing buffer shall be preserved until the author either clears or overwrites them. If this flag is false, attempting to perform operations using this context as a source image after the rendering function has returned can lead to undefined behavior. This includes readPixels or toDataURL calls, or using this context as the source image of another context's texImage2D or drawImage call.

While it is sometimes desirable to preserve the drawing buffer, it can cause significant performance loss on some platforms. Whenever possible this flag should remain false and other techniques used. Techniques like synchronous drawing buffer access (e.g., calling readPixels or toDataURL in the same function that renders to the drawing buffer) can be used to get the contents of the drawing buffer. If the author needs to render to the same drawing buffer over a series of calls, a Framebuffer Object can be used.

Implementations may optimize away the required implicit clear operation of the Drawing Buffer as long as a guarantee can be made that the author cannot gain access to buffer contents from another process. For instance, if the author performs an explicit clear then the implicit clear is not needed.

2.3 The WebGL Viewport

OpenGL manages a rectangular viewport as part of its state which defines the placement of the rendering results in the drawing buffer. Upon creation of WebGL contextcontext, the viewport is initialized to a rectangle with origin at (0, 0) and width and height equal to (context.drawingBufferWidth, context.drawingBufferHeight).

A WebGL implementation shall not affect the state of the OpenGL viewport in response to resizing of the canvas element.

Note that if a WebGL program does not contain logic to set the viewport, it will not properly handle the case where the canvas is resized. The following ECMAScript example illustrates how a WebGL program might resize the canvas programmatically.

var canvas = document.getElementById('canvas1');
var gl = canvas.getContext('webgl');
canvas.width = newWidth;
canvas.height = newHeight;
gl.viewport(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight);
        

Rationale: automatically setting the viewport will interfere with applications that set it manually. Applications are expected to use onresize handlers to respond to changes in size of the canvas and set the OpenGL viewport in turn.

2.4 Premultiplied Alpha, Canvas APIs and texImage2D

The OpenGL API allows the application to modify the blending modes used during rendering, and for this reason allows control over how alpha values in the drawing buffer are interpreted; see the premultipliedAlpha parameter in the WebGLContextAttributes section.

The HTML Canvas APIs toDataURL and drawImage must respect the premultipliedAlpha context creation parameter. When toDataURL is called against a Canvas into which WebGL content is being rendered, then if the requested image format does not specify premultiplied alpha and the WebGL context has the premultipliedAlphaparameter set to true, then the pixel values must be de-multiplied; i.e., the color channels are divided by the alpha channel. Note that this operation is lossy.

Passing a WebGL-rendered Canvas to the drawImage method of CanvasRenderingContext2D may or may not need to modify the the rendered WebGL content during the drawing operation, depending on the premultiplication needs of the CanvasRenderingContext2D implementation.

When passing a WebGL-rendered Canvas to the texImage2D API, then depending on the setting of the premultipliedAlpha context creation parameter of the passed canvas and the UNPACK_PREMULTIPLY_ALPHA_WEBGL pixel store parameter of the destination WebGL context, the pixel data may need to be changed to or from premultiplied form.

3 WebGL Resources

OpenGL manages several types of resources as part of its state. These are identified by integer object names and are obtained from OpenGL by various creation calls. In contrast WebGL represents these resources as DOM objects. Each object is derived from the WebGLObject interface. Currently supported resources are: textures, buffers (i.e., VBOs), framebuffers, renderbuffers, shaders and programs. The WebGLRenderingContext interface has a method to create a WebGLObject subclass for each type. Data from the underlying graphics library are stored in these objects and are fully managed by them. The resources represented by these objects are guaranteed to exist as long as the object exists. Furthermore, the DOM object is guaranteed to exist as long as the author has an explicit valid reference to it or as long as it is bound by the underlying graphics library. When none of these conditions exist the user agent can, at any point, delete the object using the equivalent of a delete call (e.g., deleteTexture). If authors wish to control when the underlying resource is released then the delete call can be made explicitly.

4 Security

4.1 Resource Restrictions

WebGL resources such as textures and vertex buffer objects (VBOs) must always contain initialized data, even if they were created without initial user data values. Creating a resource without initial values is commonly used to reserve space for a texture or VBO, which is then modified using texSubImage or bufferSubData calls. If initial data is not provided to these calls, the WebGL implementation must initialize their contents to 0; depth renderbuffers must be cleared to the default 1.0 clear depth. This may require creating a zeroed temporary buffer the size of a requested VBO, so that it can be initialized correctly. All other forms of loading data into a texture or VBO involve either ArrayBuffers or DOM objects such as images, and are therefore already required to be initialized.

When WebGL resources are accessed by shaders through a call such as drawElements or drawArrays, the WebGL implementation must ensure that the shader cannot access either out of bounds or uninitialized data. See Enabled Vertex Attributes and Range Checking for restrictions which must be enforced by the WebGL implementation.

4.2 Origin Restrictions

In order to prevent information leakage, WebGL disallows uploading as textures:

  • Image or video elements whose origin is not the same as the origin of the Document that contains the WebGLRenderingContext's canvas element
  • Canvas elements whose origin-clean flag is set to false

If the texImage2D or texSubImage2D method is called with otherwise correct arguments and an HTMLImageElementHTMLVideoElement, or HTMLCanvasElementviolating these restrictions, a SECURITY_ERR exception must be thrown.

WebGL necessarily imposes stronger restrictions on the use of cross-domain media than other APIs such as the 2D canvas rendering context, because shaders can be used to indirectly deduce the contents of textures which have been uploaded to the GPU.

WebGL applications may utilize images and videos that come from other domains, with the cooperation of the server hosting the media, using Cross-Origin Resource Sharing [CORS]. In order to use such media, the application needs to explicitly request permission to do so, and the server needs to explicitly grant permission. Successful CORS-enabled fetches of image and video elements from other domains cause the origin of these elements to be set to that of the containing Document[HTML].

The following ECMAScript example demonstrates how to issue a CORS request for an image coming from another domain. The image is fetched from the server without any credentials, i.e., cookies.

var gl = ...;
var image = new Image();

// The onload handler should be set to a function which uploads the HTMLImageElement
// using texImage2D or texSubImage2D.
image.onload = ...;

image.crossOrigin = "anonymous";

image.src = "http://other-domain.com/image.jpg";

Note that these rules imply that the origin-clean flag for a canvas rendered using WebGL will never be set to false.

For more information on issuing CORS requests for image and video elements, consult:

4.3 Supported GLSL Constructs

A WebGL implementation must only accept shaders which conform to The OpenGL ES Shading Language, Version 1.00 [GLES20GLSL], and which do not exceed the minimum functionality mandated in Sections 4 and 5 of Appendix A. In particular:

  • A shader referencing state variables or functions that are available in other versions of GLSL, such as that found in versions of OpenGL for the desktop, must not be allowed to load.
  • for loops must conform to the structural constraints in Appendix A.
  • while and do-while loops are disallowed, since they are optional in Appendix A.
  • Appendix A mandates certain forms of indexing of arrays; for example, within fragment shaders, indexing is only mandated with a constant-index-expression (see[GLES20GLSL] for the definition of this term). In the WebGL API, only the forms of indexing mandated in Appendix A are supported.

In addition to the reserved identifiers in the aforementioned specification, identifiers starting with "webgl_" and "_webgl_" are reserved for use by WebGL. A shader which declares a function, variable, structure name, or structure field starting with these prefixes must not be allowed to load.

4.4 Defense Against Denial of Service

It is possible to create, either intentionally or unintentionally, combinations of shaders and geometry that take an undesirably long time to render. This issue is analogous to that of long-running scripts, for which user agents already have safeguards. However, long-running draw calls can cause loss of interactivity for the entire window system, not just the user agent.

In the general case it is not possible to impose limits on the structure of incoming shaders to guard against this problem. Experimentation has shown that even very strict structural limits are insufficient to prevent long rendering times, and such limits would prevent shader authors from implementing common algorithms.

User agents should implement safeguards to prevent excessively long rendering times and associated loss of interactivity. Suggested safeguards include:

  • Splitting up draw calls with large numbers of elements into smaller draw calls.
  • Timing individual draw calls and forbidding further rendering from a page if a certain timeout is exceeded.
  • Using any watchdog facilities available at the user level, graphics API level, or operating system level to limit the duration of draw calls.
  • Separating the graphics rendering of the user agent into a distinct operating system process which can be terminated and restarted without losing application state.

The supporting infrastructure at the OS and graphics API layer is expected to improve over time, which is why the exact nature of these safeguards is not specified.

4.5 Out-of-Range Array Accesses

Shaders must not be allowed to read or write array elements that lie outside the bounds of the array. This includes any variable of array type, as well as vector or matrix types such as vec3 or mat4 when accessed using array subscripting syntax. If detected during compilation, such accesses must generate an error and prevent the shader from compiling. Otherwise, at runtime they shall return zero or the value at any valid index of the same array.

See Supported GLSL Constructs for more information on restrictions which simplify static analysis of the array indexing operations in shaders.

5 DOM Interfaces

This section describes the interfaces and functionality added to the DOM to support runtime access to the functionality described above.

5.1 Types

The following types are used in all interfaces in the following section.

typedef unsigned long  GLenum;
typedef boolean        GLboolean;
typedef unsigned long  GLbitfield;
typedef byte           GLbyte;         /* 'byte' should be a signed 8 bit type. */
typedef short          GLshort;
typedef long           GLint;
typedef long           GLsizei;
typedef long long      GLintptr;
typedef long long      GLsizeiptr;
// Ideally the typedef below would use 'unsigned byte', but that doesn't currently exist in Web IDL.
typedef octet          GLubyte;        /* 'octet' should be an unsigned 8 bit type. */
typedef unsigned short GLushort;
typedef unsigned long  GLuint;
typedef unrestricted float GLfloat;
typedef unrestricted float GLclampf;

5.2 WebGLContextAttributes

The WebGLContextAttributes dictionary contains drawing surface attributes and is passed as the second parameter to getContext.

dictionary WebGLContextAttributes {
    GLboolean alpha = true;
    GLboolean depth = true;
    GLboolean stencil = false;
    GLboolean antialias = true;
    GLboolean premultipliedAlpha = true;
    GLboolean preserveDrawingBuffer = false;
};

5.2.1 Context creation parameters

The following list describes each attribute in the WebGLContextAttributes object and its use. For each attribute the default value is shown. The default value is used either if no second parameter is passed to getContext, or if a user object is passed which has no attribute of the given name.

alpha
If the value is true, the drawing buffer has an alpha channel for the purposes of performing OpenGL destination alpha operations and compositing with the page. If the value is false, no alpha buffer is available.
depth
If the value is true, the drawing buffer has a depth buffer of at least 16 bits. If the value is false, no depth buffer is available.
stencil
If the value is true, the drawing buffer has a stencil buffer of at least 8 bits. If the value is false, no stencil buffer is available.
antialias
If the value is true and the implementation supports antialiasing the drawing buffer will perform antialiasing using its choice of technique (multisample/supersample) and quality. If the value is false or the implementation does not support antialiasing, no antialiasing is performed.
premultipliedAlpha
If the value is true the page compositor will assume the drawing buffer contains colors with premultiplied alpha. If the value is false the page compositor will assume that colors in the drawing buffer are not premultiplied. This flag is ignored if the alpha flag is false. See Premultiplied Alpha for more information on the effects of the premultipliedAlpha flag.
preserveDrawingBuffer
If false, once the drawing buffer is presented as described in theDrawing Buffer section, the contents of the drawing buffer are cleared to their default values. All elements of the drawing buffer (color, depth and stencil) are cleared. If the value is true the buffers will not be cleared and will preserve their values until cleared or overwritten by the author.
On some hardware setting the preserveDrawingBuffer flag to true can have significant performance implications.

Here is an ECMAScript example which passes a WebGLContextAttributes argument to getContext. It assumes the presence of a canvas element named "canvas1" on the page.

var canvas = document.getElementById('canvas1');
var context = canvas.getContext('webgl',
                                { antialias: false,
                                  stencil: true });
    

5.3 WebGLObject

The WebGLObject interface is the parent interface for all GL objects.

Each WebGLObject has an invalidated flag, which is initially unset.

interface WebGLObject {
};

5.4 WebGLBuffer

The WebGLBuffer interface represents an OpenGL Buffer Object. The underlying object is created as if by calling glGenBuffers (OpenGL ES 2.0 §2.9man page) , bound as if by calling glBindBuffer (OpenGL ES 2.0 §2.9man page) and destroyed as if by calling glDeleteBuffers (OpenGL ES 2.0 §2.9man page) .

interface WebGLBuffer : WebGLObject {
};

5.5 WebGLFramebuffer

The WebGLFramebuffer interface represents an OpenGL Framebuffer Object. The underlying object is created as if by calling glGenFramebuffers (OpenGL ES 2.0 §4.4.1man page) , bound as if by calling glBindFramebuffer (OpenGL ES 2.0 §4.4.1man page) and destroyed as if by calling glDeleteFramebuffers (OpenGL ES 2.0 §4.4.1man page) .

interface WebGLFramebuffer : WebGLObject {
};

5.6 WebGLProgram

The WebGLProgram interface represents an OpenGL Program Object. The underlying object is created as if by calling glCreateProgram (OpenGL ES 2.0 §2.10.3man page) , used as if by calling glUseProgram (OpenGL ES 2.0 §2.10.3man page) and destroyed as if by calling glDeleteProgram (OpenGL ES 2.0 §2.10.3man page) .

interface WebGLProgram : WebGLObject {
};

5.7 WebGLRenderbuffer

The WebGLRenderbuffer interface represents an OpenGL Renderbuffer Object. The underlying object is created as if by calling glGenRenderbuffers (OpenGL ES 2.0 §4.4.3,man page) , bound as if by calling glBindRenderbuffer (OpenGL ES 2.0 §4.4.3man page) and destroyed as if by calling glDeleteRenderbuffers (OpenGL ES 2.0 §4.4.3man page) .

interface WebGLRenderbuffer : WebGLObject {
};

5.8 WebGLShader

The WebGLShader interface represents an OpenGL Shader Object. The underlying object is created as if by calling glCreateShader (OpenGL ES 2.0 §2.10.1man page) , attached to a Program as if by calling glAttachShader (OpenGL ES 2.0 §2.10.3man page) and destroyed as if by calling glDeleteShader (OpenGL ES 2.0 §2.10.1man page) .

interface WebGLShader : WebGLObject {
};

5.9 WebGLTexture

The WebGLTexture interface represents an OpenGL Texture Object. The underlying object is created as if by calling glGenTextures (OpenGL ES 2.0 §3.7.13man page) , bound as if by calling glBindTexture (OpenGL ES 2.0 §3.7.13man page) and destroyed as if by calling glDeleteTextures (OpenGL ES 2.0 §3.7.13man page) .

interface WebGLTexture : WebGLObject {
};

5.10 WebGLUniformLocation

The WebGLUniformLocation interface represents the location of a uniform variable in a shader program.

interface WebGLUniformLocation {
};

5.11 WebGLActiveInfo

The WebGLActiveInfo interface represents the information returned from the getActiveAttrib and getActiveUniform calls.

interface WebGLActiveInfo {
    readonly attribute GLint size;
    readonly attribute GLenum type;
    readonly attribute DOMString name;
};

5.11.1 Attributes

The following attributes are available:

size of type GLint
The size of the requested variable.
type of type GLenum
The data type of the requested variable.
name of type DOMString
The name of the requested variable.

5.12 WebGLShaderPrecisionFormat

The WebGLShaderPrecisionFormat interface represents the information returned from the getShaderPrecisionFormat call.

interface WebGLShaderPrecisionFormat {
    readonly attribute GLint rangeMin;
    readonly attribute GLint rangeMax;
    readonly attribute GLint precision;
};

5.12.1 Attributes

The following attributes are available:

rangeMin of type GLint
The base 2 log of the absolute value of the minimum value that can be represented.
rangeMax of type GLint
The base 2 log of the absolute value of the maximum value that can be represented.
precision of type GLint
The number of bits of precision that can be represented. For integer formats this value is always 0.

5.13 ArrayBuffer and Typed Arrays

Vertex, index, texture, and other data is transferred to the WebGL implementation using the ArrayBuffer and views defined in the Typed Array specification[TYPEDARRAYS].

Typed Arrays support the creation of interleaved, heterogeneous vertex data; uploading of distinct blocks of data into a large vertex buffer object; and most other use cases required by OpenGL programs.

Here is an ECMAScript example showing access to the same ArrayBuffer using different types of typed arrays. In this case the buffer contains a floating point vertex position (x, y, z) followed by a color as 4 unsigned bytes (r, g, b, a).

var numVertices = 100; // for example

// Compute the size needed for the buffer, in bytes and floats
var vertexSize = 3 * Float32Array.BYTES_PER_ELEMENT +
     4 * Uint8Array.BYTES_PER_ELEMENT;
var vertexSizeInFloats = vertexSize / Float32Array.BYTES_PER_ELEMENT;

// Allocate the buffer
var buf = new ArrayBuffer(numVertices * vertexSize);

// Map this buffer to a Float32Array to access the positions
var positionArray = new Float32Array(buf);

// Map the same buffer to a Uint8Array to access the color
var colorArray = new Uint8Array(buf);

// Set up the initial offset of the vertices and colors within the buffer
var positionIdx = 0;
var colorIdx = 3 * Float32Array.BYTES_PER_ELEMENT;

// Initialize the buffer
for (var i = 0; i < numVertices; i++) {
    positionArray[positionIdx] = ...;
    positionArray[positionIdx + 1] = ...;
    positionArray[positionIdx + 2] = ...;
    colorArray[colorIdx] = ...;
    colorArray[colorIdx + 1] = ...;
    colorArray[colorIdx + 2] = ...;
    colorArray[colorIdx + 3] = ...;
    positionIdx += vertexSizeInFloats;
    colorIdx += vertexSize;
}
    

5.14 The WebGL context

The WebGLRenderingContext represents the API allowing OpenGL ES 2.0 style rendering into the canvas element.

Before performing the implementation of any method of the WebGLRenderingContext interface or any method of an interface returned by the getExtension method, the following steps must be performed:

  1.  If the [WebGLHandlesContextLoss] extended attribute appears on the called method, perform the implementation of the called method, return its result and terminate these steps.
  2.  Let use default return value be false.
  3.  If the webgl context lost flag is set, let use default return value be true.
  4.  If any argument to the method is a WebGLObject with its invalidated flag set, generate an INVALID_OPERATION error and let use default return value be true.
  5.  If use default return value is true, perform the following steps:
    1.  If the return type of the called method is any or any nullable type, return null.
    2.  Terminate this algorithm without calling the method implementation.
  6.  Otherwise, perform the implementation of the called method and return its result.

See the context lost event for further details.

interface WebGLRenderingContext {

    /* ClearBufferMask */
    const GLenum DEPTH_BUFFER_BIT               = 0x00000100;
    const GLenum STENCIL_BUFFER_BIT             = 0x00000400;
    const GLenum COLOR_BUFFER_BIT               = 0x00004000;

    /* BeginMode */
    const GLenum POINTS                         = 0x0000;
    const GLenum LINES                          = 0x0001;
    const GLenum LINE_LOOP                      = 0x0002;
    const GLenum LINE_STRIP                     = 0x0003;
    const GLenum TRIANGLES                      = 0x0004;
    const GLenum TRIANGLE_STRIP                 = 0x0005;
    const GLenum TRIANGLE_FAN                   = 0x0006;

    /* AlphaFunction (not supported in ES20) */
    /*      NEVER */
    /*      LESS */
    /*      EQUAL */
    /*      LEQUAL */
    /*      GREATER */
    /*      NOTEQUAL */
    /*      GEQUAL */
    /*      ALWAYS */

    /* BlendingFactorDest */
    const GLenum ZERO                           = 0;
    const GLenum ONE                            = 1;
    const GLenum SRC_COLOR                      = 0x0300;
    const GLenum ONE_MINUS_SRC_COLOR            = 0x0301;
    const GLenum SRC_ALPHA                      = 0x0302;
    const GLenum ONE_MINUS_SRC_ALPHA            = 0x0303;
    const GLenum DST_ALPHA                      = 0x0304;
    const GLenum ONE_MINUS_DST_ALPHA            = 0x0305;

    /* BlendingFactorSrc */
    /*      ZERO */
    /*      ONE */
    const GLenum DST_COLOR                      = 0x0306;
    const GLenum ONE_MINUS_DST_COLOR            = 0x0307;
    const GLenum SRC_ALPHA_SATURATE             = 0x0308;
    /*      SRC_ALPHA */
    /*      ONE_MINUS_SRC_ALPHA */
    /*      DST_ALPHA */
    /*      ONE_MINUS_DST_ALPHA */

    /* BlendEquationSeparate */
    const GLenum FUNC_ADD                       = 0x8006;
    const GLenum BLEND_EQUATION                 = 0x8009;
    const GLenum BLEND_EQUATION_RGB             = 0x8009;   /* same as BLEND_EQUATION */
    const GLenum BLEND_EQUATION_ALPHA           = 0x883D;

    /* BlendSubtract */
    const GLenum FUNC_SUBTRACT                  = 0x800A;
    const GLenum FUNC_REVERSE_SUBTRACT          = 0x800B;

    /* Separate Blend Functions */
    const GLenum BLEND_DST_RGB                  = 0x80C8;
    const GLenum BLEND_SRC_RGB                  = 0x80C9;
    const GLenum BLEND_DST_ALPHA                = 0x80CA;
    const GLenum BLEND_SRC_ALPHA                = 0x80CB;
    const GLenum CONSTANT_COLOR                 = 0x8001;
    const GLenum ONE_MINUS_CONSTANT_COLOR       = 0x8002;
    const GLenum CONSTANT_ALPHA                 = 0x8003;
    const GLenum ONE_MINUS_CONSTANT_ALPHA       = 0x8004;
    const GLenum BLEND_COLOR                    = 0x8005;

    /* Buffer Objects */
    const GLenum ARRAY_BUFFER                   = 0x8892;
    const GLenum ELEMENT_ARRAY_BUFFER           = 0x8893;
    const GLenum ARRAY_BUFFER_BINDING           = 0x8894;
    const GLenum ELEMENT_ARRAY_BUFFER_BINDING   = 0x8895;

    const GLenum STREAM_DRAW                    = 0x88E0;
    const GLenum STATIC_DRAW                    = 0x88E4;
    const GLenum DYNAMIC_DRAW                   = 0x88E8;

    const GLenum BUFFER_SIZE                    = 0x8764;
    const GLenum BUFFER_USAGE                   = 0x8765;

    const GLenum CURRENT_VERTEX_ATTRIB          = 0x8626;

    /* CullFaceMode */
    const GLenum FRONT                          = 0x0404;
    const GLenum BACK                           = 0x0405;
    const GLenum FRONT_AND_BACK                 = 0x0408;

    /* DepthFunction */
    /*      NEVER */
    /*      LESS */
    /*      EQUAL */
    /*      LEQUAL */
    /*      GREATER */
    /*      NOTEQUAL */
    /*      GEQUAL */
    /*      ALWAYS */

    /* EnableCap */
    /* TEXTURE_2D */
    const GLenum CULL_FACE                      = 0x0B44;
    const GLenum BLEND                          = 0x0BE2;
    const GLenum DITHER                         = 0x0BD0;
    const GLenum STENCIL_TEST                   = 0x0B90;
    const GLenum DEPTH_TEST                     = 0x0B71;
    const GLenum SCISSOR_TEST                   = 0x0C11;
    const GLenum POLYGON_OFFSET_FILL            = 0x8037;
    const GLenum SAMPLE_ALPHA_TO_COVERAGE       = 0x809E;
    const GLenum SAMPLE_COVERAGE                = 0x80A0;

    /* ErrorCode */
    const GLenum NO_ERROR                       = 0;
    const GLenum INVALID_ENUM                   = 0x0500;
    const GLenum INVALID_VALUE                  = 0x0501;
    const GLenum INVALID_OPERATION              = 0x0502;
    const GLenum OUT_OF_MEMORY                  = 0x0505;

    /* FrontFaceDirection */
    const GLenum CW                             = 0x0900;
    const GLenum CCW                            = 0x0901;

    /* GetPName */
    const GLenum LINE_WIDTH                     = 0x0B21;
    const GLenum ALIASED_POINT_SIZE_RANGE       = 0x846D;
    const GLenum ALIASED_LINE_WIDTH_RANGE       = 0x846E;
    const GLenum CULL_FACE_MODE                 = 0x0B45;
    const GLenum FRONT_FACE                     = 0x0B46;
    const GLenum DEPTH_RANGE                    = 0x0B70;
    const GLenum DEPTH_WRITEMASK                = 0x0B72;
    const GLenum DEPTH_CLEAR_VALUE              = 0x0B73;
    const GLenum DEPTH_FUNC                     = 0x0B74;
    const GLenum STENCIL_CLEAR_VALUE            = 0x0B91;
    const GLenum STENCIL_FUNC                   = 0x0B92;
    const GLenum STENCIL_FAIL                   = 0x0B94;
    const GLenum STENCIL_PASS_DEPTH_FAIL        = 0x0B95;
    const GLenum STENCIL_PASS_DEPTH_PASS        = 0x0B96;
    const GLenum STENCIL_REF                    = 0x0B97;
    const GLenum STENCIL_VALUE_MASK             = 0x0B93;
    const GLenum STENCIL_WRITEMASK              = 0x0B98;
    const GLenum STENCIL_BACK_FUNC              = 0x8800;
    const GLenum STENCIL_BACK_FAIL              = 0x8801;
    const GLenum STENCIL_BACK_PASS_DEPTH_FAIL   = 0x8802;
    const GLenum STENCIL_BACK_PASS_DEPTH_PASS   = 0x8803;
    const GLenum STENCIL_BACK_REF               = 0x8CA3;
    const GLenum STENCIL_BACK_VALUE_MASK        = 0x8CA4;
    const GLenum STENCIL_BACK_WRITEMASK         = 0x8CA5;
    const GLenum VIEWPORT                       = 0x0BA2;
    const GLenum SCISSOR_BOX                    = 0x0C10;
    /*      SCISSOR_TEST */
    const GLenum COLOR_CLEAR_VALUE              = 0x0C22;
    const GLenum COLOR_WRITEMASK                = 0x0C23;
    const GLenum UNPACK_ALIGNMENT               = 0x0CF5;
    const GLenum PACK_ALIGNMENT                 = 0x0D05;
    const GLenum MAX_TEXTURE_SIZE               = 0x0D33;
    const GLenum MAX_VIEWPORT_DIMS              = 0x0D3A;
    const GLenum SUBPIXEL_BITS                  = 0x0D50;
    const GLenum RED_BITS                       = 0x0D52;
    const GLenum GREEN_BITS                     = 0x0D53;
    const GLenum BLUE_BITS                      = 0x0D54;
    const GLenum ALPHA_BITS                     = 0x0D55;
    const GLenum DEPTH_BITS                     = 0x0D56;
    const GLenum STENCIL_BITS                   = 0x0D57;
    const GLenum POLYGON_OFFSET_UNITS           = 0x2A00;
    /*      POLYGON_OFFSET_FILL */
    const GLenum POLYGON_OFFSET_FACTOR          = 0x8038;
    const GLenum TEXTURE_BINDING_2D             = 0x8069;
    const GLenum SAMPLE_BUFFERS                 = 0x80A8;
    const GLenum SAMPLES                        = 0x80A9;
    const GLenum SAMPLE_COVERAGE_VALUE          = 0x80AA;
    const GLenum SAMPLE_COVERAGE_INVERT         = 0x80AB;

    /* GetTextureParameter */
    /*      TEXTURE_MAG_FILTER */
    /*      TEXTURE_MIN_FILTER */
    /*      TEXTURE_WRAP_S */
    /*      TEXTURE_WRAP_T */

    const GLenum COMPRESSED_TEXTURE_FORMATS     = 0x86A3;

    /* HintMode */
    const GLenum DONT_CARE                      = 0x1100;
    const GLenum FASTEST                        = 0x1101;
    const GLenum NICEST                         = 0x1102;

    /* HintTarget */
    const GLenum GENERATE_MIPMAP_HINT            = 0x8192;

    /* DataType */
    const GLenum BYTE                           = 0x1400;
    const GLenum UNSIGNED_BYTE                  = 0x1401;
    const GLenum SHORT                          = 0x1402;
    const GLenum UNSIGNED_SHORT                 = 0x1403;
    const GLenum INT                            = 0x1404;
    const GLenum UNSIGNED_INT                   = 0x1405;
    const GLenum FLOAT                          = 0x1406;

    /* PixelFormat */
    const GLenum DEPTH_COMPONENT                = 0x1902;
    const GLenum ALPHA                          = 0x1906;
    const GLenum RGB                            = 0x1907;
    const GLenum RGBA                           = 0x1908;
    const GLenum LUMINANCE                      = 0x1909;
    const GLenum LUMINANCE_ALPHA                = 0x190A;

    /* PixelType */
    /*      UNSIGNED_BYTE */
    const GLenum UNSIGNED_SHORT_4_4_4_4         = 0x8033;
    const GLenum UNSIGNED_SHORT_5_5_5_1         = 0x8034;
    const GLenum UNSIGNED_SHORT_5_6_5           = 0x8363;

    /* Shaders */
    const GLenum FRAGMENT_SHADER                  = 0x8B30;
    const GLenum VERTEX_SHADER                    = 0x8B31;
    const GLenum MAX_VERTEX_ATTRIBS               = 0x8869;
    const GLenum MAX_VERTEX_UNIFORM_VECTORS       = 0x8DFB;
    const GLenum MAX_VARYING_VECTORS              = 0x8DFC;
    const GLenum MAX_COMBINED_TEXTURE_IMAGE_UNITS = 0x8B4D;
    const GLenum MAX_VERTEX_TEXTURE_IMAGE_UNITS   = 0x8B4C;
    const GLenum MAX_TEXTURE_IMAGE_UNITS          = 0x8872;
    const GLenum MAX_FRAGMENT_UNIFORM_VECTORS     = 0x8DFD;
    const GLenum SHADER_TYPE                      = 0x8B4F;
    const GLenum DELETE_STATUS                    = 0x8B80;
    const GLenum LINK_STATUS                      = 0x8B82;
    const GLenum VALIDATE_STATUS                  = 0x8B83;
    const GLenum ATTACHED_SHADERS                 = 0x8B85;
    const GLenum ACTIVE_UNIFORMS                  = 0x8B86;
    const GLenum ACTIVE_ATTRIBUTES                = 0x8B89;
    const GLenum SHADING_LANGUAGE_VERSION         = 0x8B8C;
    const GLenum CURRENT_PROGRAM                  = 0x8B8D;

    /* StencilFunction */
    const GLenum NEVER                          = 0x0200;
    const GLenum LESS                           = 0x0201;
    const GLenum EQUAL                          = 0x0202;
    const GLenum LEQUAL                         = 0x0203;
    const GLenum GREATER                        = 0x0204;
    const GLenum NOTEQUAL                       = 0x0205;
    const GLenum GEQUAL                         = 0x0206;
    const GLenum ALWAYS                         = 0x0207;

    /* StencilOp */
    /*      ZERO */
    const GLenum KEEP                           = 0x1E00;
    const GLenum REPLACE                        = 0x1E01;
    const GLenum INCR                           = 0x1E02;
    const GLenum DECR                           = 0x1E03;
    const GLenum INVERT                         = 0x150A;
    const GLenum INCR_WRAP                      = 0x8507;
    const GLenum DECR_WRAP                      = 0x8508;

    /* StringName */
    const GLenum VENDOR                         = 0x1F00;
    const GLenum RENDERER                       = 0x1F01;
    const GLenum VERSION                        = 0x1F02;

    /* TextureMagFilter */
    const GLenum NEAREST                        = 0x2600;
    const GLenum LINEAR                         = 0x2601;

    /* TextureMinFilter */
    /*      NEAREST */
    /*      LINEAR */
    const GLenum NEAREST_MIPMAP_NEAREST         = 0x2700;
    const GLenum LINEAR_MIPMAP_NEAREST          = 0x2701;
    const GLenum NEAREST_MIPMAP_LINEAR          = 0x2702;
    const GLenum LINEAR_MIPMAP_LINEAR           = 0x2703;

    /* TextureParameterName */
    const GLenum TEXTURE_MAG_FILTER             = 0x2800;
    const GLenum TEXTURE_MIN_FILTER             = 0x2801;
    const GLenum TEXTURE_WRAP_S                 = 0x2802;
    const GLenum TEXTURE_WRAP_T                 = 0x2803;

    /* TextureTarget */
    const GLenum TEXTURE_2D                     = 0x0DE1;
    const GLenum TEXTURE                        = 0x1702;

    const GLenum TEXTURE_CUBE_MAP               = 0x8513;
    const GLenum TEXTURE_BINDING_CUBE_MAP       = 0x8514;
    const GLenum TEXTURE_CUBE_MAP_POSITIVE_X    = 0x8515;
    const GLenum TEXTURE_CUBE_MAP_NEGATIVE_X    = 0x8516;
    const GLenum TEXTURE_CUBE_MAP_POSITIVE_Y    = 0x8517;
    const GLenum TEXTURE_CUBE_MAP_NEGATIVE_Y    = 0x8518;
    const GLenum TEXTURE_CUBE_MAP_POSITIVE_Z    = 0x8519;
    const GLenum TEXTURE_CUBE_MAP_NEGATIVE_Z    = 0x851A;
    const GLenum MAX_CUBE_MAP_TEXTURE_SIZE      = 0x851C;

    /* TextureUnit */
    const GLenum TEXTURE0                       = 0x84C0;
    const GLenum TEXTURE1                       = 0x84C1;
    const GLenum TEXTURE2                       = 0x84C2;
    const GLenum TEXTURE3                       = 0x84C3;
    const GLenum TEXTURE4                       = 0x84C4;
    const GLenum TEXTURE5                       = 0x84C5;
    const GLenum TEXTURE6                       = 0x84C6;
    const GLenum TEXTURE7                       = 0x84C7;
    const GLenum TEXTURE8                       = 0x84C8;
    const GLenum TEXTURE9                       = 0x84C9;
    const GLenum TEXTURE10                      = 0x84CA;
    const GLenum TEXTURE11                      = 0x84CB;
    const GLenum TEXTURE12                      = 0x84CC;
    const GLenum TEXTURE13                      = 0x84CD;
    const GLenum TEXTURE14                      = 0x84CE;
    const GLenum TEXTURE15                      = 0x84CF;
    const GLenum TEXTURE16                      = 0x84D0;
    const GLenum TEXTURE17                      = 0x84D1;
    const GLenum TEXTURE18                      = 0x84D2;
    const GLenum TEXTURE19                      = 0x84D3;
    const GLenum TEXTURE20                      = 0x84D4;
    const GLenum TEXTURE21                      = 0x84D5;
    const GLenum TEXTURE22                      = 0x84D6;
    const GLenum TEXTURE23                      = 0x84D7;
    const GLenum TEXTURE24                      = 0x84D8;
    const GLenum TEXTURE25                      = 0x84D9;
    const GLenum TEXTURE26                      = 0x84DA;
    const GLenum TEXTURE27                      = 0x84DB;
    const GLenum TEXTURE28                      = 0x84DC;
    const GLenum TEXTURE29                      = 0x84DD;
    const GLenum TEXTURE30                      = 0x84DE;
    const GLenum TEXTURE31                      = 0x84DF;
    const GLenum ACTIVE_TEXTURE                 = 0x84E0;

    /* TextureWrapMode */
    const GLenum REPEAT                         = 0x2901;
    const GLenum CLAMP_TO_EDGE                  = 0x812F;
    const GLenum MIRRORED_REPEAT                = 0x8370;

    /* Uniform Types */
    const GLenum FLOAT_VEC2                     = 0x8B50;
    const GLenum FLOAT_VEC3                     = 0x8B51;
    const GLenum FLOAT_VEC4                     = 0x8B52;
    const GLenum INT_VEC2                       = 0x8B53;
    const GLenum INT_VEC3                       = 0x8B54;
    const GLenum INT_VEC4                       = 0x8B55;
    const GLenum BOOL                           = 0x8B56;
    const GLenum BOOL_VEC2                      = 0x8B57;
    const GLenum BOOL_VEC3                      = 0x8B58;
    const GLenum BOOL_VEC4                      = 0x8B59;
    const GLenum FLOAT_MAT2                     = 0x8B5A;
    const GLenum FLOAT_MAT3                     = 0x8B5B;
    const GLenum FLOAT_MAT4                     = 0x8B5C;
    const GLenum SAMPLER_2D                     = 0x8B5E;
    const GLenum SAMPLER_CUBE                   = 0x8B60;

    /* Vertex Arrays */
    const GLenum VERTEX_ATTRIB_ARRAY_ENABLED        = 0x8622;
    const GLenum VERTEX_ATTRIB_ARRAY_SIZE           = 0x8623;
    const GLenum VERTEX_ATTRIB_ARRAY_STRIDE         = 0x8624;
    const GLenum VERTEX_ATTRIB_ARRAY_TYPE           = 0x8625;
    const GLenum VERTEX_ATTRIB_ARRAY_NORMALIZED     = 0x886A;
    const GLenum VERTEX_ATTRIB_ARRAY_POINTER        = 0x8645;
    const GLenum VERTEX_ATTRIB_ARRAY_BUFFER_BINDING = 0x889F;

    /* Shader Source */
    const GLenum COMPILE_STATUS                 = 0x8B81;

    /* Shader Precision-Specified Types */
    const GLenum LOW_FLOAT                      = 0x8DF0;
    const GLenum MEDIUM_FLOAT                   = 0x8DF1;
    const GLenum HIGH_FLOAT                     = 0x8DF2;
    const GLenum LOW_INT                        = 0x8DF3;
    const GLenum MEDIUM_INT                     = 0x8DF4;
    const GLenum HIGH_INT                       = 0x8DF5;

    /* Framebuffer Object. */
    const GLenum FRAMEBUFFER                    = 0x8D40;
    const GLenum RENDERBUFFER                   = 0x8D41;

    const GLenum RGBA4                          = 0x8056;
    const GLenum RGB5_A1                        = 0x8057;
    const GLenum RGB565                         = 0x8D62;
    const GLenum DEPTH_COMPONENT16              = 0x81A5;
    const GLenum STENCIL_INDEX                  = 0x1901;
    const GLenum STENCIL_INDEX8                 = 0x8D48;
    const GLenum DEPTH_STENCIL                  = 0x84F9;

    const GLenum RENDERBUFFER_WIDTH             = 0x8D42;
    const GLenum RENDERBUFFER_HEIGHT            = 0x8D43;
    const GLenum RENDERBUFFER_INTERNAL_FORMAT   = 0x8D44;
    const GLenum RENDERBUFFER_RED_SIZE          = 0x8D50;
    const GLenum RENDERBUFFER_GREEN_SIZE        = 0x8D51;
    const GLenum RENDERBUFFER_BLUE_SIZE         = 0x8D52;
    const GLenum RENDERBUFFER_ALPHA_SIZE        = 0x8D53;
    const GLenum RENDERBUFFER_DEPTH_SIZE        = 0x8D54;
    const GLenum RENDERBUFFER_STENCIL_SIZE      = 0x8D55;

    const GLenum FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE           = 0x8CD0;
    const GLenum FRAMEBUFFER_ATTACHMENT_OBJECT_NAME           = 0x8CD1;
    const GLenum FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL         = 0x8CD2;
    const GLenum FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE = 0x8CD3;

    const GLenum COLOR_ATTACHMENT0              = 0x8CE0;
    const GLenum DEPTH_ATTACHMENT               = 0x8D00;
    const GLenum STENCIL_ATTACHMENT             = 0x8D20;
    const GLenum DEPTH_STENCIL_ATTACHMENT       = 0x821A;

    const GLenum NONE                           = 0;

    const GLenum FRAMEBUFFER_COMPLETE                      = 0x8CD5;
    const GLenum FRAMEBUFFER_INCOMPLETE_ATTACHMENT         = 0x8CD6;
    const GLenum FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT = 0x8CD7;
    const GLenum FRAMEBUFFER_INCOMPLETE_DIMENSIONS         = 0x8CD9;
    const GLenum FRAMEBUFFER_UNSUPPORTED                   = 0x8CDD;

    const GLenum FRAMEBUFFER_BINDING            = 0x8CA6;
    const GLenum RENDERBUFFER_BINDING           = 0x8CA7;
    const GLenum MAX_RENDERBUFFER_SIZE          = 0x84E8;

    const GLenum INVALID_FRAMEBUFFER_OPERATION  = 0x0506;

    /* WebGL-specific enums */
    const GLenum UNPACK_FLIP_Y_WEBGL            = 0x9240;
    const GLenum UNPACK_PREMULTIPLY_ALPHA_WEBGL = 0x9241;
    const GLenum CONTEXT_LOST_WEBGL             = 0x9242;
    const GLenum UNPACK_COLORSPACE_CONVERSION_WEBGL = 0x9243;
    const GLenum BROWSER_DEFAULT_WEBGL          = 0x9244;

    readonly attribute HTMLCanvasElement canvas;
    readonly attribute GLsizei drawingBufferWidth;
    readonly attribute GLsizei drawingBufferHeight;

    [WebGLHandlesContextLoss] WebGLContextAttributes? getContextAttributes();
    [WebGLHandlesContextLoss] boolean isContextLost();

    sequence<DOMString>? getSupportedExtensions();
    object? getExtension(DOMString name);

    void activeTexture(GLenum texture);
    void attachShader(WebGLProgram? program, WebGLShader? shader);
    void bindAttribLocation(WebGLProgram? program, GLuint index, DOMString name);
    void bindBuffer(GLenum target, WebGLBuffer? buffer);
    void bindFramebuffer(GLenum target, WebGLFramebuffer? framebuffer);
    void bindRenderbuffer(GLenum target, WebGLRenderbuffer? renderbuffer);
    void bindTexture(GLenum target, WebGLTexture? texture);
    void blendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);
    void blendEquation(GLenum mode);
    void blendEquationSeparate(GLenum modeRGB, GLenum modeAlpha);
    void blendFunc(GLenum sfactor, GLenum dfactor);
    void blendFuncSeparate(GLenum srcRGB, GLenum dstRGB,
                           GLenum srcAlpha, GLenum dstAlpha);

    void bufferData(GLenum target, GLsizeiptr size, GLenum usage);
    void bufferData(GLenum target, ArrayBufferView data, GLenum usage);
    void bufferData(GLenum target, ArrayBuffer? data, GLenum usage);
    void bufferSubData(GLenum target, GLintptr offset, ArrayBufferView data);
    void bufferSubData(GLenum target, GLintptr offset, ArrayBuffer? data);

    [WebGLHandlesContextLoss] GLenum checkFramebufferStatus(GLenum target);
    void clear(GLbitfield mask);
    void clearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);
    void clearDepth(GLclampf depth);
    void clearStencil(GLint s);
    void colorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha);
    void compileShader(WebGLShader? shader);

    void compressedTexImage2D(GLenum target, GLint level, GLenum internalformat,
                              GLsizei width, GLsizei height, GLint border,
                              ArrayBufferView data);
    void compressedTexSubImage2D(GLenum target, GLint level,
                                 GLint xoffset, GLint yoffset,
                                 GLsizei width, GLsizei height, GLenum format,
                                 ArrayBufferView data);

    void copyTexImage2D(GLenum target, GLint level, GLenum internalformat,
                        GLint x, GLint y, GLsizei width, GLsizei height,
                        GLint border);
    void copyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
                           GLint x, GLint y, GLsizei width, GLsizei height);

    WebGLBuffer? createBuffer();
    WebGLFramebuffer? createFramebuffer();
    WebGLProgram? createProgram();
    WebGLRenderbuffer? createRenderbuffer();
    WebGLShader? createShader(GLenum type);
    WebGLTexture? createTexture();

    void cullFace(GLenum mode);

    void deleteBuffer(WebGLBuffer? buffer);
    void deleteFramebuffer(WebGLFramebuffer? framebuffer);
    void deleteProgram(WebGLProgram? program);
    void deleteRenderbuffer(WebGLRenderbuffer? renderbuffer);
    void deleteShader(WebGLShader? shader);
    void deleteTexture(WebGLTexture? texture);

    void depthFunc(GLenum func);
    void depthMask(GLboolean flag);
    void depthRange(GLclampf zNear, GLclampf zFar);
    void detachShader(WebGLProgram? program, WebGLShader? shader);
    void disable(GLenum cap);
    void disableVertexAttribArray(GLuint index);
    void drawArrays(GLenum mode, GLint first, GLsizei count);
    void drawElements(GLenum mode, GLsizei count, GLenum type, GLintptr offset);

    void enable(GLenum cap);
    void enableVertexAttribArray(GLuint index);
    void finish();
    void flush();
    void framebufferRenderbuffer(GLenum target, GLenum attachment,
                                 GLenum renderbuffertarget,
                                 WebGLRenderbuffer? renderbuffer);
    void framebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget,
                              WebGLTexture? texture, GLint level);
    void frontFace(GLenum mode);

    void generateMipmap(GLenum target);

    WebGLActiveInfo? getActiveAttrib(WebGLProgram? program, GLuint index);
    WebGLActiveInfo? getActiveUniform(WebGLProgram? program, GLuint index);
    sequence<WebGLShader>? getAttachedShaders(WebGLProgram? program);

    [WebGLHandlesContextLoss] GLint getAttribLocation(WebGLProgram? program, DOMString name);

    any getBufferParameter(GLenum target, GLenum pname);
    any getParameter(GLenum pname);

    [WebGLHandlesContextLoss] GLenum getError();

    any getFramebufferAttachmentParameter(GLenum target, GLenum attachment,
                                          GLenum pname);
    any getProgramParameter(WebGLProgram? program, GLenum pname);
    DOMString? getProgramInfoLog(WebGLProgram? program);
    any getRenderbufferParameter(GLenum target, GLenum pname);
    any getShaderParameter(WebGLShader? shader, GLenum pname);
    WebGLShaderPrecisionFormat? getShaderPrecisionFormat(GLenum shadertype, GLenum precisiontype);
    DOMString? getShaderInfoLog(WebGLShader? shader);

    DOMString? getShaderSource(WebGLShader? shader);

    any getTexParameter(GLenum target, GLenum pname);

    any getUniform(WebGLProgram? program, WebGLUniformLocation? location);

    WebGLUniformLocation? getUniformLocation(WebGLProgram? program, DOMString name);

    any getVertexAttrib(GLuint index, GLenum pname);

    [WebGLHandlesContextLoss] GLsizeiptr getVertexAttribOffset(GLuint index, GLenum pname);

    void hint(GLenum target, GLenum mode);
    [WebGLHandlesContextLoss] GLboolean isBuffer(WebGLBuffer? buffer);
    [WebGLHandlesContextLoss] GLboolean isEnabled(GLenum cap);
    [WebGLHandlesContextLoss] GLboolean isFramebuffer(WebGLFramebuffer? framebuffer);
    [WebGLHandlesContextLoss] GLboolean isProgram(WebGLProgram? program);
    [WebGLHandlesContextLoss] GLboolean isRenderbuffer(WebGLRenderbuffer? renderbuffer);
    [WebGLHandlesContextLoss] GLboolean isShader(WebGLShader? shader);
    [WebGLHandlesContextLoss] GLboolean isTexture(WebGLTexture? texture);
    void lineWidth(GLfloat width);
    void linkProgram(WebGLProgram? program);
    void pixelStorei(GLenum pname, GLint param);
    void polygonOffset(GLfloat factor, GLfloat units);

    void readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
                    GLenum format, GLenum type, ArrayBufferView? pixels);

    void renderbufferStorage(GLenum target, GLenum internalformat,
                             GLsizei width, GLsizei height);
    void sampleCoverage(GLclampf value, GLboolean invert);
    void scissor(GLint x, GLint y, GLsizei width, GLsizei height);

    void shaderSource(WebGLShader? shader, DOMString source);

    void stencilFunc(GLenum func, GLint ref, GLuint mask);
    void stencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask);
    void stencilMask(GLuint mask);
    void stencilMaskSeparate(GLenum face, GLuint mask);
    void stencilOp(GLenum fail, GLenum zfail, GLenum zpass);
    void stencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass);

    void texImage2D(GLenum target, GLint level, GLenum internalformat,
                    GLsizei width, GLsizei height, GLint border, GLenum format,
                    GLenum type, ArrayBufferView? pixels);
    void texImage2D(GLenum target, GLint level, GLenum internalformat,
                    GLenum format, GLenum type, ImageData? pixels);
    void texImage2D(GLenum target, GLint level, GLenum internalformat,
                    GLenum format, GLenum type, HTMLImageElement image); // May throw DOMException
    void texImage2D(GLenum target, GLint level, GLenum internalformat,
                    GLenum format, GLenum type, HTMLCanvasElement canvas); // May throw DOMException
    void texImage2D(GLenum target, GLint level, GLenum internalformat,
                    GLenum format, GLenum type, HTMLVideoElement video); // May throw DOMException

    void texParameterf(GLenum target, GLenum pname, GLfloat param);
    void texParameteri(GLenum target, GLenum pname, GLint param);

    void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
                       GLsizei width, GLsizei height,
                       GLenum format, GLenum type, ArrayBufferView? pixels);
    void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
                       GLenum format, GLenum type, ImageData? pixels);
    void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
                       GLenum format, GLenum type, HTMLImageElement image); // May throw DOMException
    void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
                       GLenum format, GLenum type, HTMLCanvasElement canvas); // May throw DOMException
    void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
                       GLenum format, GLenum type, HTMLVideoElement video); // May throw DOMException

    void uniform1f(WebGLUniformLocation? location, GLfloat x);
    void uniform1fv(WebGLUniformLocation? location, Float32Array v);
    void uniform1fv(WebGLUniformLocation? location, sequence<GLfloat> v);
    void uniform1i(WebGLUniformLocation? location, GLint x);
    void uniform1iv(WebGLUniformLocation? location, Int32Array v);
    void uniform1iv(WebGLUniformLocation? location, sequence<long> v);
    void uniform2f(WebGLUniformLocation? location, GLfloat x, GLfloat y);
    void uniform2fv(WebGLUniformLocation? location, Float32Array v);
    void uniform2fv(WebGLUniformLocation? location, sequence<GLfloat> v);
    void uniform2i(WebGLUniformLocation? location, GLint x, GLint y);
    void uniform2iv(WebGLUniformLocation? location, Int32Array v);
    void uniform2iv(WebGLUniformLocation? location, sequence<long> v);
    void uniform3f(WebGLUniformLocation? location, GLfloat x, GLfloat y, GLfloat z);
    void uniform3fv(WebGLUniformLocation? location, Float32Array v);
    void uniform3fv(WebGLUniformLocation? location, sequence<GLfloat> v);
    void uniform3i(WebGLUniformLocation? location, GLint x, GLint y, GLint z);
    void uniform3iv(WebGLUniformLocation? location, Int32Array v);
    void uniform3iv(WebGLUniformLocation? location, sequence<long> v);
    void uniform4f(WebGLUniformLocation? location, GLfloat x, GLfloat y, GLfloat z, GLfloat w);
    void uniform4fv(WebGLUniformLocation? location, Float32Array v);
    void uniform4fv(WebGLUniformLocation? location, sequence<GLfloat> v);
    void uniform4i(WebGLUniformLocation? location, GLint x, GLint y, GLint z, GLint w);
    void uniform4iv(WebGLUniformLocation? location, Int32Array v);
    void uniform4iv(WebGLUniformLocation? location, sequence<long> v);

    void uniformMatrix2fv(WebGLUniformLocation? location, GLboolean transpose,
                          Float32Array value);
    void uniformMatrix2fv(WebGLUniformLocation? location, GLboolean transpose,
                          sequence<GLfloat> value);
    void uniformMatrix3fv(WebGLUniformLocation? location, GLboolean transpose,
                          Float32Array value);
    void uniformMatrix3fv(WebGLUniformLocation? location, GLboolean transpose,
                          sequence<GLfloat> value);
    void uniformMatrix4fv(WebGLUniformLocation? location, GLboolean transpose,
                          Float32Array value);
    void uniformMatrix4fv(WebGLUniformLocation? location, GLboolean transpose,
                          sequence<GLfloat> value);

    void useProgram(WebGLProgram? program);
    void validateProgram(WebGLProgram? program);

    void vertexAttrib1f(GLuint indx, GLfloat x);
    void vertexAttrib1fv(GLuint indx, Float32Array values);
    void vertexAttrib1fv(GLuint indx, sequence<GLfloat> values);
    void vertexAttrib2f(GLuint indx, GLfloat x, GLfloat y);
    void vertexAttrib2fv(GLuint indx, Float32Array values);
    void vertexAttrib2fv(GLuint indx, sequence<GLfloat> values);
    void vertexAttrib3f(GLuint indx, GLfloat x, GLfloat y, GLfloat z);
    void vertexAttrib3fv(GLuint indx, Float32Array values);
    void vertexAttrib3fv(GLuint indx, sequence<GLfloat> values);
    void vertexAttrib4f(GLuint indx, GLfloat x, GLfloat y, GLfloat z, GLfloat w);
    void vertexAttrib4fv(GLuint indx, Float32Array values);
    void vertexAttrib4fv(GLuint indx, sequence<GLfloat> values);
    void vertexAttribPointer(GLuint indx, GLint size, GLenum type,
                             GLboolean normalized, GLsizei stride, GLintptr offset);

    void viewport(GLint x, GLint y, GLsizei width, GLsizei height);
};

5.14.1 Attributes

The following attributes are available:

canvas of type HTMLCanvasElement
A reference to the canvas element which created this context.
drawingBufferWidth of type GLsizei
The actual width of the drawing buffer. May be different from the width attribute of the HTMLCanvasElement if the implementation is unable to satisfy the requested widthor height.
drawingBufferHeight of type GLsizei
The actual height of the drawing buffer. May be different from the height attribute of the HTMLCanvasElement if the implementation is unable to satisfy the requested width or height.

5.14.2 Getting information about the context

[WebGLHandlesContextLoss] WebGLContextAttributes? getContextAttributes()
If the webgl context lost flag is set, returns null. Otherwise, returns a copy of the actual context parameters.

5.14.3 Setting and getting state

OpenGL ES 2.0 maintains state values for use in rendering. All the calls in this group behave identically to their OpenGL counterparts unless otherwise noted.

void activeTexture(GLenum texture) (OpenGL ES 2.0 §3.7man page)
void blendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) (OpenGL ES 2.0 §4.1.6man page)
void blendEquation(GLenum mode) (OpenGL ES 2.0 §4.1.6man page)
void blendEquationSeparate(GLenum modeRGB, GLenum modeAlpha) (OpenGL ES 2.0 §4.1.6man page)
void blendFunc(GLenum sfactor, GLenum dfactor) (OpenGL ES 2.0 §4.1.6man page)
See Blending With Constant Color for limitations imposed by WebGL.
void blendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha) (OpenGL ES 2.0 §4.1.6man page)
See Blending With Constant Color for limitations imposed by WebGL.
void clearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) (OpenGL ES 2.0 §4.2.3man page)
void clearDepth(GLclampf depth) (OpenGL ES 2.0 §4.2.3man page)
depth value is clamped to the range 0 to 1.
void clearStencil(GLint s) (OpenGL ES 2.0 §4.2.3man page)
void colorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha) (OpenGL ES 2.0 §4.2.2man page)
void cullFace(GLenum mode) (OpenGL ES 2.0 §3.5.1man page)
void depthFunc(GLenum func) (OpenGL ES 2.0 §4.1.5man page)
void depthMask(GLboolean flag) (OpenGL ES 2.0 §4.2.2man page)
void depthRange(GLclampf zNear, GLclampf zFar) (OpenGL ES 2.0 §2.12.1man page)
zNear and zFar values are clamped to the range 0 to 1 and zNear must be less than or equal to zFar; see Viewport Depth Range.
void disable(GLenum cap) (man page)
void enable(GLenum cap) (man page)
void frontFace(GLenum mode) (OpenGL ES 2.0 §3.5.1man page)
any getParameter(GLenum pname) (glGet OpenGL ES 2.0 man page) (glGetString OpenGL ES 2.0 man page)
Return the value for the passed pname. The type returned is the natural type for the requested pname, as given in the following table:
pname returned type
ACTIVE_TEXTURE GLenum
ALIASED_LINE_WIDTH_RANGE Float32Array (with 2 elements)
ALIASED_POINT_SIZE_RANGE Float32Array (with 2 elements)
ALPHA_BITS GLint
ARRAY_BUFFER_BINDING WebGLBuffer
BLEND GLboolean
BLEND_COLOR Float32Array (with 4 values)
BLEND_DST_ALPHA GLenum
BLEND_DST_RGB GLenum
BLEND_EQUATION_ALPHA GLenum
BLEND_EQUATION_RGB GLenum
BLEND_SRC_ALPHA GLenum
BLEND_SRC_RGB GLenum
BLUE_BITS GLint
COLOR_CLEAR_VALUE Float32Array (with 4 values)
COLOR_WRITEMASK sequence<GLboolean> (with 4 values)
COMPRESSED_TEXTURE_FORMATS Uint32Array
CULL_FACE GLboolean
CULL_FACE_MODE GLenum
CURRENT_PROGRAM WebGLProgram
DEPTH_BITS GLint
DEPTH_CLEAR_VALUE GLfloat
DEPTH_FUNC GLenum
DEPTH_RANGE Float32Array (with 2 elements)
DEPTH_TEST GLboolean
DEPTH_WRITEMASK GLboolean
DITHER GLboolean
ELEMENT_ARRAY_BUFFER_BINDING WebGLBuffer
FRAMEBUFFER_BINDING WebGLFramebuffer
FRONT_FACE GLenum
GENERATE_MIPMAP_HINT GLenum
GREEN_BITS GLint
LINE_WIDTH GLfloat
MAX_COMBINED_TEXTURE_IMAGE_UNITS GLint
MAX_CUBE_MAP_TEXTURE_SIZE GLint
MAX_FRAGMENT_UNIFORM_VECTORS GLint
MAX_RENDERBUFFER_SIZE GLint
MAX_TEXTURE_IMAGE_UNITS GLint
MAX_TEXTURE_SIZE GLint
MAX_VARYING_VECTORS GLint
MAX_VERTEX_ATTRIBS GLint
MAX_VERTEX_TEXTURE_IMAGE_UNITS GLint
MAX_VERTEX_UNIFORM_VECTORS GLint
MAX_VIEWPORT_DIMS Int32Array (with 2 elements)
PACK_ALIGNMENT GLint
POLYGON_OFFSET_FACTOR GLfloat
POLYGON_OFFSET_FILL GLboolean
POLYGON_OFFSET_UNITS GLfloat
RED_BITS GLint
RENDERBUFFER_BINDING WebGLRenderbuffer
RENDERER DOMString
SAMPLE_BUFFERS GLint
SAMPLE_COVERAGE_INVERT GLboolean
SAMPLE_COVERAGE_VALUE GLfloat
SAMPLES GLint
SCISSOR_BOX Int32Array (with 4 elements)
SCISSOR_TEST GLboolean
SHADING_LANGUAGE_VERSION DOMString
STENCIL_BACK_FAIL GLenum
STENCIL_BACK_FUNC GLenum
STENCIL_BACK_PASS_DEPTH_FAIL GLenum
STENCIL_BACK_PASS_DEPTH_PASS GLenum
STENCIL_BACK_REF GLint
STENCIL_BACK_VALUE_MASK GLuint
STENCIL_BACK_WRITEMASK GLuint
STENCIL_BITS GLint
STENCIL_CLEAR_VALUE GLint
STENCIL_FAIL GLenum
STENCIL_FUNC GLenum
STENCIL_PASS_DEPTH_FAIL GLenum
STENCIL_PASS_DEPTH_PASS GLenum
STENCIL_REF GLint
STENCIL_TEST GLboolean
STENCIL_VALUE_MASK GLuint
STENCIL_WRITEMASK GLuint
SUBPIXEL_BITS GLint
TEXTURE_BINDING_2D WebGLTexture
TEXTURE_BINDING_CUBE_MAP WebGLTexture
UNPACK_ALIGNMENT GLint
UNPACK_COLORSPACE_CONVERSION_WEBGL GLenum
UNPACK_FLIP_Y_WEBGL GLboolean
UNPACK_PREMULTIPLY_ALPHA_WEBGL GLboolean
VENDOR DOMString
VERSION DOMString
VIEWPORT Int32Array (with 4 elements)

All queries returning sequences or typed arrays return a new object each time.

If pname is not in the table above, generates an INVALID_ENUM error and returns null.

The following pname arguments return a string describing some aspect of the current WebGL implementation:

VERSION Returns a version or release number of the form WebGL<space>1.0<space><vendor-specific information>.
SHADING_LANGUAGE_VERSION Returns a version or release number of the form WebGL<space>GLSL<space>ES<space>1.0<space><vendor-specific information>.
VENDOR Returns the company responsible for this WebGL implementation. This name does not change from release to release.
RENDERER Returns the name of the renderer. This name is typically specific to a particular configuration of a hardware platform. It does not change from release to release.

See Extension Queries for information on querying the available extensions in the current WebGL implementation.

[WebGLHandlesContextLoss] GLenum getError() (OpenGL ES 2.0 §2.5man page)
If the context's webgl context lost flag is set, returns CONTEXT_LOST_WEBGL the first time this method is called. Afterward, returns NO_ERROR until the context has been restored.
void hint(GLenum target, GLenum mode) (OpenGL ES 2.0 §5.2man page)
[WebGLHandlesContextLoss] GLboolean isEnabled(GLenum cap) (OpenGL ES 2.0 §6.1.1man page)
Returns false if the context's webgl context lost flag is set.
void lineWidth(GLfloat width) (OpenGL ES 2.0 §3.4man page)
void pixelStorei(GLenum pname, GLint param) (OpenGL ES 2.0 §3.6.1man page)
In addition to the parameters in the OpenGL ES 2.0 specification, the WebGL specification accepts the parameters UNPACK_FLIP_Y_WEBGL,UNPACK_PREMULTIPLY_ALPHA_WEBGL and UNPACK_COLORSPACE_CONVERSION_WEBGL. See Pixel Storage Parameters for documentation of these parameters.
void polygonOffset(GLfloat factor, GLfloat units) (OpenGL ES 2.0 §3.5.2man page)
void sampleCoverage(GLclampf value, GLboolean invert) (OpenGL ES 2.0 §4.1.3man page)
void stencilFunc(GLenum func, GLint ref, GLuint mask) (OpenGL ES 2.0 §4.1.4man page)
void stencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask) (OpenGL ES 2.0 §4.1.4man page)
See Stencil Separate Mask and Reference Value for information on WebGL specific limitations to the allowable argument values.
void stencilMask(GLuint mask) (OpenGL ES 2.0 §4.2.2man page)
See Stencil Separate Mask and Reference Value for information on WebGL specific limitations to the allowable mask values.
void stencilMaskSeparate(GLenum face, GLuint mask) (OpenGL ES 2.0 §4.2.2man page)
void stencilOp(GLenum fail, GLenum zfail, GLenum zpass) (OpenGL ES 2.0 §4.1.4man page)
void stencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass) (OpenGL ES 2.0 §4.1.4man page)

5.14.4 Viewing and clipping

The viewport specifies the affine transformation of x and y from normalized device coordinates to window coordinates. The size of the drawing buffer is determined by the HTMLCanvasElement. The scissor box defines a rectangle which constrains drawing. When the scissor test is enabled only pixels that lie within the scissor box can be modified by drawing commands. When enabled drawing can only occur inside the intersection of the viewport, canvas area and the scissor box. When the scissor test is not enabled drawing can only occur inside the intersection of the viewport and canvas area.

void scissor(GLint x, GLint y, GLsizei width, GLsizei height) (OpenGL ES 2.0 §4.1.2man page)
void viewport(GLint x, GLint y, GLsizei width, GLsizei height) (OpenGL ES 2.0 §2.12.1man page)

5.14.5 Buffer objects

Buffer objects (sometimes referred to as VBOs) hold vertex attribute data for the GLSL shaders.

void bindBuffer(GLenum target, WebGLBuffer? buffer) (OpenGL ES 2.0 §2.9man page)
Binds the given WebGLBuffer object to the given binding point (target), either ARRAY_BUFFER or ELEMENT_ARRAY_BUFFER. If the buffer is null then any buffer currently bound to this target is unbound. A given WebGLBuffer object may only be bound to one of the ARRAY_BUFFER or ELEMENT_ARRAY_BUFFER target in its lifetime. An attempt to bind a buffer object to the other target will generate an INVALID_OPERATION error, and the current binding will remain untouched.
void bufferData(GLenum target, GLsizeiptr size, GLenum usage) (OpenGL ES 2.0 §2.9man page)
Set the size of the currently bound WebGLBuffer object for the passed target. The buffer is initialized to 0.

void bufferData(GLenum target, ArrayBufferView data, GLenum usage)

void bufferData(GLenum target, ArrayBuffer? data, GLenum usage) (OpenGL ES 2.0 §2.9man page)

Set the size of the currently bound WebGLBuffer object for the passed target to the size of the passed data, then write the contents of data to the buffer object. 

If the passed data is null then an INVALID_VALUE error is generated.

void bufferSubData(GLenum target, GLintptr offset, ArrayBufferView data)

void bufferSubData(GLenum target, GLintptr offset, ArrayBuffer? data) (OpenGL ES 2.0 §2.9man page)

For the WebGLBuffer object bound to the passed target write the passed data starting at the passed offset. If the data would be written past the end of the buffer object an INVALID_VALUE error is generated. If data is null then an INVALID_VALUE error is generated.
WebGLBuffer? createBuffer() (OpenGL ES 2.0 §2.9, similar to glGenBuffers)

Create a WebGLBuffer object and initialize it with a buffer object name as if by calling glGenBuffers.
void deleteBuffer(WebGLBuffer? buffer) (OpenGL ES 2.0 §2.9, similar to glDeleteBuffers)

Delete the buffer object contained in the passed WebGLBuffer as if by calling glDeleteBuffers. If the buffer has already been deleted the call has no effect. Note that the buffer object will be deleted when the WebGLBuffer object is destroyed. This method merely gives the author greater control over when the buffer object is destroyed.
any getBufferParameter(GLenum target, GLenum pname) (OpenGL ES 2.0 §6.1.3, similar to glGetBufferParameteriv)

Return the value for the passed pname. The type returned is the natural type for the requested pname, as given in the following table:

pname returned type
BUFFER_SIZE GLint
BUFFER_USAGE GLenum

If pname is not in the table above, generates an INVALID_ENUM error.

If an OpenGL error is generated, returns null.

[WebGLHandlesContextLoss] GLboolean isBuffer(WebGLBuffer? buffer) (OpenGL ES 2.0 §6.1.6man page)

Return true if the passed WebGLBuffer is valid and false otherwise. 

Returns false if the buffer's invalidated flag is set.

5.14.6 Framebuffer objects

Framebuffer objects provide an alternative rendering target to the drawing buffer. They are a collection of color, alpha, depth and stencil buffers and are often used to render an image that will later be used as a texture.

void bindFramebuffer(GLenum target, WebGLFramebuffer? framebuffer) (OpenGL ES 2.0 §4.4.1man page)
Bind the given WebGLFramebuffer object to the given binding point (target), which must be FRAMEBUFFER. If framebuffer is null, the default framebuffer provided by the context is bound and attempts to modify or query state on target FRAMEBUFFER will generate an INVALID_OPERATION error.
[WebGLHandlesContextLoss] GLenum checkFramebufferStatus(GLenum target) (OpenGL ES 2.0 §4.4.5man page)
Returns FRAMEBUFFER_UNSUPPORTED if the context's webgl context lost flag is set.
WebGLFramebuffer? createFramebuffer() (OpenGL ES 2.0 §4.4.1, similar to glGenFramebuffers)
Create a WebGLFramebuffer object and initialize it with a framebuffer object name as if by calling glGenFramebuffers.
void deleteFramebuffer(WebGLFramebuffer? buffer) (OpenGL ES 2.0 §4.4.1, similar to glDeleteFramebuffers)
Delete the framebuffer object contained in the passed WebGLFramebuffer as if by calling glDeleteFramebuffers. If the framebuffer has already been deleted the call has no effect. Note that the framebuffer object will be deleted when the WebGLFramebuffer object is destroyed. This method merely gives the author greater control over when the framebuffer object is destroyed.
void framebufferRenderbuffer(GLenum target, GLenum attachment, GLenum renderbuffertarget, WebGLRenderbuffer? renderbuffer) (OpenGL ES 2.0 §4.4.3man page)
void framebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget, WebGLTexture? texture, GLint level) (OpenGL ES 2.0 §4.4.3man page)
any getFramebufferAttachmentParameter(GLenum target, GLenum attachment, GLenum pname) (OpenGL ES 2.0 §6.1.3, similar to glGetFramebufferAttachmentParameteriv)
Return the value for the passed pname given the passed target and attachment. The type returned is the natural type for the requested pname, as given in the following table:
pname returned type
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE GLenum
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME WebGLRenderbuffer or WebGLTexture
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL GLint
FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE GLint

If pname is not in the table above, generates an INVALID_ENUM error.

If an OpenGL error is generated, returns null.

[WebGLHandlesContextLoss] GLboolean isFramebuffer(WebGLFramebuffer? framebuffer) (OpenGL ES 2.0 §6.1.7man page)
Return true if the passed WebGLFramebuffer is valid and false otherwise. 

Returns false if the framebuffer's invalidated flag is set.

5.14.7 Renderbuffer objects

Renderbuffer objects are used to provide storage for the individual buffers used in a framebuffer object.

void bindRenderbuffer(GLenum target, WebGLRenderbuffer? renderbuffer) (OpenGL ES 2.0 §4.4.3man page)
Bind the given WebGLRenderbuffer object to the given binding point (target), which must be RENDERBUFFER. If renderbuffer is null the renderbuffer object currently bound to this target is unbound.
WebGLRenderbuffer? createRenderbuffer() (OpenGL ES 2.0 §4.4.3, similar to glGenRenderbuffers)
Create a WebGLRenderbuffer object and initialize it with a renderbuffer object name as if by calling glGenRenderbuffers.
void deleteRenderbuffer(WebGLRenderbuffer? renderbuffer) (OpenGL ES 2.0 §4.4.3, similar to glDeleteRenderbuffers)
Delete the renderbuffer object contained in the passed WebGLRenderbuffer as if by calling glDeleteRenderbuffers. If the renderbuffer has already been deleted the call has no effect. Note that the renderbuffer object will be deleted when the WebGLRenderbuffer object is destroyed. This method merely gives the author greater control over when the renderbuffer object is destroyed.
any getRenderbufferParameter(GLenum target, GLenum pname) (OpenGL ES 2.0 §6.1.3, similar to glGetRenderbufferParameteriv)
Return the value for the passed pname given the passed target. The type returned is the natural type for the requested pname, as given in the following table:
pname returned type
RENDERBUFFER_WIDTH GLint
RENDERBUFFER_HEIGHT GLint
RENDERBUFFER_INTERNAL_FORMAT GLenum
RENDERBUFFER_RED_SIZE GLint
RENDERBUFFER_GREEN_SIZE GLint
RENDERBUFFER_BLUE_SIZE GLint
RENDERBUFFER_ALPHA_SIZE GLint
RENDERBUFFER_DEPTH_SIZE GLint
RENDERBUFFER_STENCIL_SIZE GLint

If pname is not in the table above, generates an INVALID_ENUM error.

If an OpenGL error is generated, returns null.

[WebGLHandlesContextLoss] GLboolean isRenderbuffer(WebGLRenderbuffer? renderbuffer) (OpenGL ES 2.0 §6.1.7man page)
Return true if the passed WebGLRenderbuffer is valid and false otherwise. 

Returns false if the renderbuffer's invalidated flag is set.

void renderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height) (OpenGL ES 2.0 §4.4.3man page)

5.14.8 Texture objects

Texture objects provide storage and state for texturing operations. If no WebGLTexture is bound (e.g., passing null or 0 to bindTexture) then attempts to modify or query the texture object shall generate an INVALID_OPERATION error. This is indicated in the functions below.

void bindTexture(GLenum target, WebGLTexture? texture) (OpenGL ES 2.0 §3.7.13man page)

void compressedTexImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, ArrayBufferView pixels)(OpenGL ES 2.0 §3.7.3man page)

void compressedTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, ArrayBufferView pixels) (OpenGL ES 2.0 §3.7.3man page)

If an attempt is made to call these functions with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

The core WebGL specification does not define any supported compressed texture formats. By default, these methods generate an INVALID_ENUM error and return immediately. See Compressed Texture Support.
void copyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border) (OpenGL ES 2.0 §3.7.2,man page)

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

For any pixel lying outside the frame buffer, all channels of the associated texel are initialized to 0; see Reading Pixels Outside the Framebuffer.
void copyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height) (OpenGL ES 2.0 §3.7.2man page)

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

For any pixel lying outside the frame buffer, all channels of the associated texel are initialized to 0; see Reading Pixels Outside the Framebuffer.
WebGLTexture? createTexture() (OpenGL ES 2.0 §3.7.13man page)

Create a WebGLTexture object and initialize it with a texture object name as if by calling glGenTextures.
void deleteTexture(WebGLTexture? texture) (OpenGL ES 2.0 §3.7.13man page)

Delete the texture object contained in the passed WebGLTexture as if by calling glDeleteTextures. If the texture has already been deleted the call has no effect. Note that the texture object will be deleted when the WebGLTexture object is destroyed. This method merely gives the author greater control over when the texture object is destroyed.
void generateMipmap(GLenum target) (OpenGL ES 2.0 §3.7.11man page)

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated.
any getTexParameter(GLenum target, GLenum pname) (OpenGL ES 2.0 §6.1.3man page)

Return the value for the passed pname given the passed target. The type returned is the natural type for the requested pname, as given in the following table:

pname returned type
TEXTURE_MAG_FILTER GLenum
TEXTURE_MIN_FILTER GLenum
TEXTURE_WRAP_S GLenum
TEXTURE_WRAP_T GLenum

If pname is not in the table above, generates an INVALID_ENUM error.

If an attempt is made to call this function with no WebGLTexture bound (see above), generates an INVALID_OPERATION error.

If an OpenGL error is generated, returns null.

[WebGLHandlesContextLoss] GLboolean isTexture(WebGLTexture? texture) (OpenGL ES 2.0 §6.1.4man page)

Return true if the passed WebGLTexture is valid and false otherwise. 

Returns false if the texture's invalidated flag is set.

void texImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, ArrayBufferView? pixels) (OpenGL ES 2.0 §3.7.1man page)

If pixels is null, a buffer of sufficient size initialized to 0 is passed. 

If pixels is non-null, the type of pixels must match the type of the data to be read. If it is UNSIGNED_BYTE, a Uint8Array must be supplied; if it is UNSIGNED_SHORT_5_6_5, UNSIGNED_SHORT_4_4_4_4, or UNSIGNED_SHORT_5_5_5_1, a Uint16Array must be supplied. If the types do not match, an INVALID_OPERATION error is generated. 

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

See Pixel Storage Parameters for WebGL-specific pixel storage parameters that affect the behavior of this function.

void texImage2D(GLenum target, GLint level, GLenum internalformat, GLenum format, GLenum type, ImageData? pixels)

void texImage2D(GLenum target, GLint level, GLenum internalformat, GLenum format, GLenum type, HTMLImageElement image) /* May throw DOMException */

void texImage2D(GLenum target, GLint level, GLenum internalformat, GLenum format, GLenum type, HTMLCanvasElement canvas) /* May throw DOMException */

void texImage2D(GLenum target, GLint level, GLenum internalformat, GLenum format, GLenum type, HTMLVideoElement video) /* May throw DOMException */ (OpenGL ES 2.0 §3.7.1man page)

Uploads the given element or image data to the currently bound WebGLTexture. 

The source image data is conceptually first converted to the data type and format specified by the format and type arguments, and then transferred to the WebGL implementation. If a packed pixel format is specified which would imply loss of bits of precision from the image data, this loss of precision must occur.

The first pixel transferred from the source to the WebGL implementation corresponds to the upper left corner of the source. This behavior is modified by the the UNPACK_FLIP_Y_WEBGL pixel storage parameter

If the source image is an RGB or RGBA lossless image with 8 bits per channel, the browser guarantees that the full precision of all channels is preserved. 

If the original image contains an alpha channel and the UNPACK_PREMULTIPLY_ALPHA_WEBGL pixel storage parameter is false, then the RGB values are guaranteed to never have been premultiplied by the alpha channel, whether those values are derived directly from the original file format or converted from some other color format. 

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

If this function is called with an HTMLImageElement or HTMLVideoElement whose origin differs from the origin of the containing Document, or with anHTMLCanvasElement whose origin-clean flag is set to false, a SECURITY_ERR exception must be thrown. See Origin Restrictions.

If pixels is null then an INVALID_VALUE error is generated. 

See Pixel Storage Parameters for WebGL-specific pixel storage parameters that affect the behavior of this function.
void texParameterf(GLenum target, GLenum pname, GLfloat param) (OpenGL ES 2.0 §3.7.4man page)

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated.
void texParameteri(GLenum target, GLenum pname, GLint param) (OpenGL ES 2.0 §3.7.4man page)

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated.
void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, ArrayBufferView? pixels) (OpenGL ES 2.0 §3.7.2man page)

See texImage2D for restrictions on the format and pixels arguments. 

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

If type does not match the type originally used to define the texture, an INVALID_OPERATION error is generated. 

If pixels is null then an INVALID_VALUE error is generated. 

See Pixel Storage Parameters for WebGL-specific pixel storage parameters that affect the behavior of this function.

void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLenum format, GLenum type, ImageData? pixels)

void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLenum format, GLenum type, HTMLImageElement image) /* May throw DOMException */

void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLenum format, GLenum type, HTMLCanvasElement canvas) /* May throw DOMException */

void texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLenum format, GLenum type, HTMLVideoElement video) /* May throw DOMException */ (OpenGL ES 2.0 §3.7.2man page)

Updates a sub-rectangle of the currently bound WebGLTexture with the contents of the given element or image data. 

See texImage2D for the interpretation of the format and type arguments. 

The first pixel transferred from the source to the WebGL implementation corresponds to the upper left corner of the source. This behavior is modified by the the UNPACK_FLIP_Y_WEBGL pixel storage parameter

If an attempt is made to call this function with no WebGLTexture bound (see above), an INVALID_OPERATION error is generated. 

If type does not match the type originally used to define the texture, an INVALID_OPERATION error is generated. 

If this function is called with an HTMLImageElement or HTMLVideoElement whose origin differs from the origin of the containing Document, or with anHTMLCanvasElement whose origin-clean flag is set to false, a SECURITY_ERR exception must be thrown. See Origin Restrictions.

If pixels is null then an INVALID_VALUE error is generated. 

See Pixel Storage Parameters for WebGL-specific pixel storage parameters that affect the behavior of this function.

5.14.9 Programs and Shaders

Rendering with OpenGL ES 2.0 requires the use of shaders, written in OpenGL ES's shading language, GLSL ES. Shaders must be loaded with a source string (shaderSource), compiled (compileShader) and attached to a program (attachShader) which must be linked (linkProgram) and then used (useProgram).

void attachShader(WebGLProgram? program, WebGLShader? shader) (OpenGL ES 2.0 §2.10.3man page)
void bindAttribLocation(WebGLProgram? program, GLuint index, DOMString name) (OpenGL ES 2.0 §2.10.4man page)
If the passed name is longer than the restriction defined in Maximum Uniform and Attribute Location Lengths, generates an INVALID_VALUE error. 

If name starts with one of the reserved WebGL prefixes per GLSL Constructs, generates an INVALID_OPERATION error. 

See Characters Outside the GLSL Source Character Set for additional validation performed by WebGL implementations.

void compileShader(WebGLShader? shader) (OpenGL ES 2.0 §2.10.1man page)
See Supported GLSL ConstructsMaximum GLSL Token SizeCharacters Outside the GLSL Source Character SetMaximum Nesting of Structures in GLSL Shaders, and Packing Restrictions for Uniforms and Varyings for additional constraints enforced in, additional constructs supported by, and additional validation performed by WebGL implementations.
WebGLProgram? createProgram() (OpenGL ES 2.0 §2.10.3man page)
Create a WebGLProgram object and initialize it with a program object name as if by calling glCreateProgram.
WebGLShader? createShader(type) (OpenGL ES 2.0 §2.10.1man page)
Create a WebGLShader object and initialize it with a shader object name as if by calling glCreateShader.
void deleteProgram(WebGLProgram? program) (OpenGL ES 2.0 §2.10.3man page)
Delete the program object contained in the passed WebGLProgram as if by calling glDeleteProgram. If the program has already been deleted the call has no effect. Note that the program object will be deleted when the WebGLProgram object is destroyed. This method merely gives the author greater control over when the program object is destroyed.
void deleteShader(WebGLShader? shader) (OpenGL ES 2.0 §2.10.1man page)
Delete the shader object contained in the passed WebGLShader as if by calling glDeleteShader. If the shader has already been deleted the call has no effect. Note that the shader object will be deleted when the WebGLShader object is destroyed. This method merely gives the author greater control over when the shader object is destroyed.
void detachShader(WebGLProgram? program, WebGLShader? shader) (OpenGL ES 2.0 §2.10.3man page)
sequence<WebGLShader>? getAttachedShaders(WebGLProgram? program) (OpenGL ES 2.0 §6.1.8man page)

Returns a new object representing the list of shaders attached to the passed program.

Returns null if any OpenGL errors are generated during the execution of this function.

any getProgramParameter(WebGLProgram? program, GLenum pname) (OpenGL ES 2.0 §6.1.8, similar to man page)
Return the value for the passed pname given the passed program. The type returned is the natural type for the requested pname, as given in the following table:
pname returned type
DELETE_STATUS GLboolean
LINK_STATUS GLboolean
VALIDATE_STATUS GLboolean
ATTACHED_SHADERS GLint
ACTIVE_ATTRIBUTES GLint
ACTIVE_UNIFORMS GLint

If pname is not in the table above, generates an INVALID_ENUM error and returns null.

Returns null if any OpenGL errors are generated during the execution of this function.

DOMString? getProgramInfoLog(WebGLProgram? program) (OpenGL ES 2.0 §6.1.8man page)
Returns null if any OpenGL errors are generated during the execution of this function.

any getShaderParameter(WebGLShader? shader, GLenum pname) (OpenGL ES 2.0 §6.1.8, similar to man page)
Return the value for the passed pname given the passed shader. The type returned is the natural type for the requested pname, as given in the following table:
pname returned type
SHADER_TYPE GLenum
DELETE_STATUS GLboolean
COMPILE_STATUS GLboolean

If pname is not in the table above, generates an INVALID_ENUM error and returns null.

Returns null if any OpenGL errors are generated during the execution of this function.

WebGLShaderPrecisionFormat getShaderPrecisionFormat(GLenum shadertype, GLenum precisiontype) (OpenGL ES 2.0 §6.1.8, similar to man page)
Return a new WebGLShaderPrecisionFormat describing the range and precision for the specified shader numeric format. The shadertype value can be FRAGMENT_SHADER or VERTEX_SHADER. The precisiontype value can be LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_INT, MEDIUM_INT or HIGH_INT.
DOMString? getShaderInfoLog(WebGLShader? shader) (OpenGL ES 2.0 §6.1.8man page)
Returns null if any OpenGL errors are generated during the execution of this function.

DOMString? getShaderSource(WebGLShader? shader) (OpenGL ES 2.0 §6.1.8man page)
Returns null if any OpenGL errors are generated during the execution of this function.

[WebGLHandlesContextLoss] GLboolean isProgram(WebGLProgram? program) (OpenGL ES 2.0 §6.1.8man page)
Return true if the passed WebGLProgram is valid and false otherwise. 

Returns false if the program's invalidated flag is set.

[WebGLHandlesContextLoss] GLboolean isShader(WebGLShader? shader) (OpenGL ES 2.0 §6.1.8man page)
Return true if the passed WebGLShader is valid and false otherwise. 

Returns false if the shader's invalidated flag is set.

void linkProgram(WebGLProgram? program) (OpenGL ES 2.0 §2.10.3man page)
See Packing Restrictions for Uniforms and Varyings for additional constraints enforced in, and additional validation performed by, WebGL implementations.
void shaderSource(WebGLShader? shader, DOMString source) (OpenGL ES 2.0 §2.10.1man page)
See Supported GLSL ConstructsMaximum GLSL Token SizeCharacters Outside the GLSL Source Character SetMaximum Nesting of Structures in GLSL Shaders, and Packing Restrictions for Uniforms and Varyings for additional constraints enforced in, additional constructs supported by, and additional validation performed by WebGL implementations.
void useProgram(WebGLProgram? program) (OpenGL ES 2.0 §2.10.3man page)
void validateProgram(WebGLProgram? program) (OpenGL ES 2.0 §2.10.5man page)

5.14.10 Uniforms and attributes

Values used by the shaders are passed in as uniforms or vertex attributes.

void disableVertexAttribArray(GLuint index) (OpenGL ES 2.0 §2.8man page)
void enableVertexAttribArray(GLuint index) (OpenGL ES 2.0 §2.8man page)
Enable the vertex attribute at index as an array. WebGL imposes additional rules beyond OpenGL ES 2.0 regarding enabled vertex attributes; see Enabled Vertex Attributes and Range Checking.
WebGLActiveInfo? getActiveAttrib(WebGLProgram? program, GLuint index) (OpenGL ES 2.0 §2.10.4man page)
Returns a new WebGLActiveInfo object describing the size, type and name of the vertex attribute at the passed index of the passed program object. If the passed index is out of range, generates an INVALID_VALUE error and returns null.
Returns null if any OpenGL errors are generated during the execution of this function.

WebGLActiveInfo? getActiveUniform(WebGLProgram? program, GLuint index) (OpenGL ES 2.0 §2.10.4man page)
Returns a new WebGLActiveInfo object describing the size, type and name of the uniform at the passed index of the passed program object. If the passed index is out of range, generates an INVALID_VALUE error and returns null.
Returns null if any OpenGL errors are generated during the execution of this function.

[WebGLHandlesContextLoss] GLint getAttribLocation(WebGLProgram? program, DOMString name) (OpenGL ES 2.0 §2.10.4man page)
If the passed name is longer than the restriction defined in Maximum Uniform and Attribute Location Lengths, generates an INVALID_VALUE error and returns -1. 

Returns -1 if name starts with one of the reserved WebGL prefixes per GLSL Constructs

Returns -1 if the context's webgl context lost flag is set. 

If the invalidated flag of the passed program is set, generates an INVALID_OPERATION error and returns -1. 

See Characters Outside the GLSL Source Character Set for additional validation performed by WebGL implementations.

any getUniform(WebGLProgram? program, WebGLUniformLocation? location) (OpenGL ES 2.0 §6.1.8man page)
Return the uniform value at the passed location in the passed program. The type returned is dependent on the uniform type, as shown in the following table:
uniform type returned type
boolean GLboolean
int GLint
float GLfloat
vec2 Float32Array (with 2 elements)
ivec2 Int32Array (with 2 elements)
bvec2 sequence<GLboolean> (with 2 elements)
vec3 Float32Array (with 3 elements)
ivec3 Int32Array (with 3 elements)
bvec3 sequence<GLboolean> (with 3 elements)
vec4 Float32Array (with 4 elements)
ivec4 Int32Array (with 4 elements)
bvec4 sequence<GLboolean> (with 4 elements)
mat2 Float32Array (with 4 elements)
mat3 Float32Array (with 9 elements)
mat4 Float32Array (with 16 elements)
sampler2D GLint
samplerCube GLint

All queries returning sequences or typed arrays return a new object each time.

Returns null if any OpenGL errors are generated during the execution of this function.

WebGLUniformLocation? getUniformLocation(WebGLProgram? program, DOMString name) (OpenGL ES 2.0 §2.10.4man page)

Return a new WebGLUniformLocation that represents the location of a specific uniform variable within a program object. The return value is null if name does not correspond to an active uniform variable in the passed program.

If the passed name is longer than the restriction defined in Maximum Uniform and Attribute Location Lengths, generates an INVALID_VALUE error and returns null.

Returns null if name starts with one of the reserved WebGL prefixes per GLSL Constructs.

See Characters Outside the GLSL Source Character Set for additional validation performed by WebGL implementations.

Returns null if any OpenGL errors are generated during the execution of this function.

any getVertexAttrib(GLuint index, GLenum pname) (OpenGL ES 2.0 §6.1.8man page)
Return the information requested in pname about the vertex attribute at the passed index. The type returned is dependent on the information requested, as shown in the following table:
pname returned type
VERTEX_ATTRIB_ARRAY_BUFFER_BINDING WebGLBuffer
VERTEX_ATTRIB_ARRAY_ENABLED GLboolean
VERTEX_ATTRIB_ARRAY_SIZE GLint
VERTEX_ATTRIB_ARRAY_STRIDE GLint
VERTEX_ATTRIB_ARRAY_TYPE GLenum
VERTEX_ATTRIB_ARRAY_NORMALIZED GLboolean
CURRENT_VERTEX_ATTRIB Float32Array (with 4 elements)

All queries returning sequences or typed arrays return a new object each time.

If pname is not in the table above, generates an INVALID_ENUM error.

If an OpenGL error is generated, returns null.

[WebGLHandlesContextLoss] GLsizeiptr getVertexAttribOffset(GLuint index, GLenum pname) (OpenGL ES 2.0 §6.1.8, similar to man page)
Returns 0 if the context's webgl context lost flag is set.

void uniform[1234][fi](WebGLUniformLocation? location, ...)

void uniform[1234][fi]v(WebGLUniformLocation? location, ...)

void uniformMatrix[234]fv(WebGLUniformLocation? location, GLboolean transpose, ...) (OpenGL ES 2.0 §2.10.4man page)

Each of the uniform* functions above sets the specified uniform or uniforms to the values provided. If the passed location is not null and was not obtained from the currently used program via an earlier call to getUniformLocation, an INVALID_OPERATION error will be generated. If the passed location is null, the data passed in will be silently ignored and no uniform variables will be changed. 

If the array passed to any of the vector forms (those ending in v) has an invalid length, an INVALID_VALUE error will be generated. The length is invalid if it is too short for or is not an integer multiple of the assigned type.

void vertexAttrib[1234]f(GLuint indx, ...)

void vertexAttrib[1234]fv(GLuint indx, ...) (OpenGL ES 2.0 §2.7man page)

Sets the vertex attribute at the passed index to the given constant value. Values set via the vertexAttrib are guaranteed to be returned from thegetVertexAttrib function with the CURRENT_VERTEX_ATTRIB param, even if there have been intervening calls to drawArrays or drawElements.
void vertexAttribPointer(GLuint indx, GLint size, GLenum type, GLboolean normalized, GLsizei stride, GLintptr offset) (OpenGL ES 2.0 §2.8man page)

Assign the WebGLBuffer object currently bound to the ARRAY_BUFFER target to the vertex attribute at the passed index. Size is number of components per attribute. Stride and offset are in units of bytes. Passed stride and offset must be appropriate for the passed type and size or anINVALID_OPERATION error will be generated; see Buffer Offset and Stride Requirements. If offset is negative, an INVALID_VALUE error will be generated. If no WebGLBuffer is bound to the ARRAY_BUFFER target, an INVALID_OPERATION error will be generated. In WebGL, the maximum supported stride is 255; see Vertex Attribute Data Stride.

5.14.11 Writing to the drawing buffer

OpenGL ES 2.0 has 3 calls which can render to the drawing buffer: cleardrawArrays and drawElements. Furthermore rendering can be directed to the drawing buffer or to a Framebuffer object. When rendering is directed to the drawing buffer, making any of the 3 rendering calls shall cause the drawing buffer to be presented to the HTML page compositor at the start of the next compositing operation.

void clear(GLbitfield mask) (OpenGL ES 2.0 §4.2.3man page)
void drawArrays(GLenum mode, GLint first, GLsizei count) (OpenGL ES 2.0 §2.8man page)
If first is negative, an INVALID_VALUE error will be generated.
void drawElements(GLenum mode, GLsizei count, GLenum type, GLintptr offset) (OpenGL ES 2.0 §2.8man page)
Draw using the currently bound element array buffer. The given offset is in bytes, and must be a valid multiple of the size of the given type or anINVALID_OPERATION error will be generated; see Buffer Offset and Stride Requirements. If count is greater than zero, then a non-null WebGLBuffermust be bound to the ELEMENT_ARRAY_BUFFER binding point or an INVALID_OPERATION error will be generated.

WebGL performs additional error checking beyond that specified in OpenGL ES 2.0 during calls to drawArrays and drawElements. See Enabled Vertex Attributes and Range Checking.

void finish() (OpenGL ES 2.0 §5.1man page)
void flush() (OpenGL ES 2.0 §5.1man page)

5.14.12 Reading back pixels

Pixels in the current framebuffer can be read back into an ArrayBufferView object.

void readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, ArrayBufferView? pixels) (OpenGL ES 2.0 §4.3.1man page)
Fills pixels with the pixel data in the specified rectangle of the frame buffer. The data returned from readPixels must be up-to-date as of the most recently sent drawing command. 

The type of pixels must match the type of the data to be read. For example, if it is UNSIGNED_BYTE, a Uint8Array must be supplied; if it is UNSIGNED_SHORT_5_6_5, UNSIGNED_SHORT_4_4_4_4, or UNSIGNED_SHORT_5_5_5_1, a Uint16Array must be supplied. If the types do not match, an INVALID_OPERATION error is generated. 

The following are the allowed format and type combinations:

format type
RGBA UNSIGNED_BYTE

If pixels is null, an INVALID_VALUE error is generated. If pixels is non-null, but is not large enough to retrieve all of the pixels in the specified rectangle taking into account pixel store modes, an INVALID_OPERATION error is generated. 

For any pixel lying outside the frame buffer, the value read contains 0 in all channels; see Reading Pixels Outside the Framebuffer

5.14.13 Detecting context lost events

Occurrences such as power events on mobile devices may cause the WebGL rendering context to be lost at any time and require the application to rebuild it; seeWebGLContextEvent for more details. The following method assists in detecting context lost events.

[WebGLHandlesContextLoss] boolean isContextLost()
Return true if the webgl context lost flag is set, otherwise return false.

5.14.14 Detecting and enabling extensions

An implementation of WebGL must not support any additional parameters, constants or functions without first enabling that functionality through the extension mechanism. The getSupportedExtensions function returns an array of the extension strings supported by this implementation. An extension is enabled by passing one of those strings to the getExtension function. This call returns an object which contains any constants or functions defined by that extension. The definition of that object is specific to the extension and must be defined by the extension specification.

Once an extension is enabled, no mechanism is provided to disable it. Multiple calls to getExtension with the same extension string, taking into account case-insensitive comparison, shall return the same object. An attempt to use any features of an extension without first calling getExtension to enable it must generate an appropriate GL error and must not make use of the feature.

This specification does not define any extensions. A separate WebGL extension registry defines extensions that may be supported by a particular WebGL implementation.

sequence<DOMString>? getSupportedExtensions()
Returns a list of all the supported extension strings.
object? getExtension(DOMString name)
Returns an object if, and only if, name is an ASCII case-insensitive match [HTML] for one of the names returned from getSupportedExtensions; otherwise, returns null. The object returned from getExtension contains any constants or functions provided by the extension. A returned object may have no constants or functions if the extension does not define any, but a unique object must still be returned. That object is used to indicate that the extension has been enabled.

5.15 WebGLContextEvent

WebGL generates a WebGLContextEvent event in response to a status change to the WebGL rendering context associated with the HTMLCanvasElement which has a listener for this event. Events are sent using the DOM Event System [DOM3EVENTS]. Event types can include the loss or restoration of state, or the inability to create a context. EventInit is defined in the DOM4 specification [DOM4].

To fire a WebGL context event named e means that an event using the WebGLContextEvent interface, with its type attribute [DOM4] initialized to e, and its isTrustedattribute [DOM4] initialized to true, is to be dispatched at the given object.

[Constructor(DOMString type, optional WebGLContextEventInit eventInit)]
interface WebGLContextEvent : Event {
    readonly attribute DOMString statusMessage;
};

// EventInit is defined in the DOM4 specification.
dictionary WebGLContextEventInit : EventInit {
    DOMString statusMessage;
};

The task source for all tasks queued [HTML] in this section is the WebGL task source.

5.15.1 Attributes

The following attributes are available:

statusMessage of type DOMString
A string containing additional information, or the empty string if no additional information is available.

5.15.2 The Context Lost Event

When the user agent detects that the drawing buffer associated with a WebGLRenderingContext context has been lost, it must run the following steps:

  1.  Let canvas be the context's canvas.
  2.  If context's webgl context lost flag is set, abort these steps.
  3.  Set context's webgl context lost flag.
  4.  Set the invalidated flag of each WebGLObject instance created by this context.
  5.  Queue a task to perform the following steps:
    1.  Fire a WebGL context event named "webglcontextlost" at canvas, with its statusMessage attribute set to "".
    2.  If the event's canceled flag is not set, abort these steps.
    3.  Perform the following steps asynchronously.
    4.  Await a restorable drawing buffer.
    5.  Queue a task to restore the drawing buffer for context.

The following code prevents the default behavior of the webglcontextlost event and enables the webglcontextrestored event to be delivered:

canvas.addEventListener("webglcontextlost", function(e) { e.preventDefault(); }, false); 

5.15.3 The Context Restored Event

When the user agent is to restore the drawing buffer for a WebGLRenderingContext context, it must run the following steps:

  1.  Let canvas be the canvas object associated with context.
  2.  If context's webgl context lost flag is not set, abort these steps.
  3.  Create a drawing buffer using the settings specified in context's context creation parameters, and associate the drawing buffer with context, discarding any previous drawing buffer.
  4.  Clear context's webgl context lost flag.
  5.  Reset context's OpenGL error state.
  6.  Fire a WebGL context event named "webglcontextrestored" at canvas, with its statusMessage attribute set to "".

Once the context is restored, WebGL resources such as textures and buffers that were created before the context was lost are no longer valid. The application needs to reinitialize the context's state and recreate all such resources.

The following code illustrates how an application can handle context loss and restoration:

function initializeGame() {
  initializeWorld();
  initializeResources();
}

function initializeResources() {
  initializeShaders();
  initializeBuffers();
  initializeTextures();

  // ready to draw, start the main loop
  renderFrame();
}

function renderFrame() {
  updateWorld();
  drawSkyBox();
  drawWalls();
  drawMonsters();

  requestId = window.requestAnimationFrame(
      renderFrame, canvas);
}

canvas.addEventListener(
    "webglcontextlost", function (event) {

  // inform WebGL that we handle context restoration
  event.preventDefault();

  // Stop rendering
  window.cancelAnimationFrame(requestId);
}, false);

canvas.addEventListener(
    "webglcontextrestored", function (event) {

  initializeResources();
}, false);

initializeGame();

5.15.4 The Context Creation Error Event

When the user agent is to fire a WebGL context creation error at a canvas, it must perform the following steps:

  1.  Fire a WebGL context event named "webglcontextcreationerror" at canvas, optionally with its statusMessage attribute set to a platform dependent string about the nature of the failure.

The following code illustrates how an application can retrieve information about context creation failure:

var errorInfo = "";
function onContextCreationError(event) {

  canvas.removeEventListener(
     "webglcontextcreationerror",
     onContextCreationError, false);

  errorInfo = e.statusMessage || "Unknown";
}

canvas.addEventListener(
    "webglcontextcreationerror",
    onContextCreationError, false);

var gl = canvas.getContext("experimental-webgl");
if(!gl) {
  alert("A WebGL context could not be created.\nReason: " +
        errorInfo);
}

Differences Between WebGL and OpenGL ES 2.0

This section describes changes made to the WebGL API relative to the OpenGL ES 2.0 API to improve portability across various operating systems and devices.

6.1 Buffer Object Binding

In the WebGL API, a given buffer object may only be bound to one of the ARRAY_BUFFER or ELEMENT_ARRAY_BUFFER binding points in its lifetime. This restriction implies that a given buffer object may contain either vertices or indices, but not both.

The type of a WebGLBuffer is initialized the first time it is passed as an argument to bindBuffer. A subsequent call to bindBuffer which attempts to bind the same WebGLBuffer to the other binding point will generate an INVALID_OPERATION error, and the state of the binding point will remain untouched.

6.2 No Client Side Arrays

The WebGL API does not support client-side arrays. If vertexAttribPointer is called without a WebGLBuffer bound to the ARRAY_BUFFER binding point, anINVALID_OPERATION error is generated. If drawElements is called with a count greater than zero, and no WebGLBuffer is bound to the ELEMENT_ARRAY_BUFFERbinding point, an INVALID_OPERATION error is generated.

6.3 No Default Textures

The WebGL API does not support default textures. A non-null WebGLTexture object must be bound in order for texture-related operations and queries to succeed.

6.4 Buffer Offset and Stride Requirements

The offset arguments to drawElements and vertexAttribPointer, and the stride argument to vertexAttribPointer, must be a multiple of the size of the data type passed to the call, or an INVALID_OPERATION error is generated.

6.5 Enabled Vertex Attributes and Range Checking

If a vertex attribute is enabled as an array via enableVertexAttribArray but no buffer is bound to that attribute via bindBuffer and vertexAttribPointer, then calls todrawArrays or drawElements will generate an INVALID_OPERATION error.

If a vertex attribute is enabled as an array, a buffer is bound to that attribute, and the attribute is consumed by the current program, then calls to drawArrays anddrawElements will verify that each referenced vertex lies within the storage of the bound buffer. If the range specified in drawArrays or any referenced index indrawElements lies outside the storage of the bound buffer, an INVALID_OPERATION error is generated and no geometry is drawn.

If a vertex attribute is enabled as an array, a buffer is bound to that attribute, but the attribute is not consumed by the current program, then regardless of the size of the bound buffer, it will not cause any error to be generated during a call to drawArrays or drawElements.

6.6 Framebuffer Object Attachments

WebGL adds the DEPTH_STENCIL_ATTACHMENT framebuffer object attachment point and the DEPTH_STENCIL renderbuffer internal format. To attach both depth and stencil buffers to a framebuffer object, call renderbufferStorage with the DEPTH_STENCIL internal format, and then call framebufferRenderbuffer with theDEPTH_STENCIL_ATTACHMENT attachment point.

A renderbuffer attached to the DEPTH_ATTACHMENT attachment point must be allocated with the DEPTH_COMPONENT16 internal format. A renderbuffer attached to the STENCIL_ATTACHMENT attachment point must be allocated with the STENCIL_INDEX8 internal format. A renderbuffer attached to theDEPTH_STENCIL_ATTACHMENT attachment point must be allocated with the DEPTH_STENCIL internal format.

In the WebGL API, it is an error to concurrently attach renderbuffers to the following combinations of attachment points:

  • DEPTH_ATTACHMENT + DEPTH_STENCIL_ATTACHMENT
  • STENCIL_ATTACHMENT + DEPTH_STENCIL_ATTACHMENT
  • DEPTH_ATTACHMENT + STENCIL_ATTACHMENT

If any of the constraints above are violated, then:

  • checkFramebufferStatus must return FRAMEBUFFER_UNSUPPORTED.
  • The following calls, which either modify or read the framebuffer, must generate an INVALID_FRAMEBUFFER_OPERATION error and return early, leaving the contents of the framebuffer, destination texture or destination memory untouched.
    • clear
    • copyTexImage2D
    • copyTexSubImage2D
    • drawArrays
    • drawElements
    • readPixels

The following combinations of framebuffer object attachments, when all of the attachments are framebuffer attachment complete, non-zero, and have the same width and height, must result in the framebuffer being framebuffer complete:

  • COLOR_ATTACHMENT0 = RGBA/UNSIGNED_BYTE texture
  • COLOR_ATTACHMENT0 = RGBA/UNSIGNED_BYTE texture + DEPTH_ATTACHMENT = DEPTH_COMPONENT16 renderbuffer
  • COLOR_ATTACHMENT0 = RGBA/UNSIGNED_BYTE texture + DEPTH_STENCIL_ATTACHMENT = DEPTH_STENCIL renderbuffer

6.7 Pixel Storage Parameters

The WebGL API supports the following additional parameters to pixelStorei.

UNPACK_FLIP_Y_WEBGL of type boolean
If set, then during any subsequent calls to texImage2D or texSubImage2D, the source data is flipped along the vertical axis, so that conceptually the last row is the first one transferred. The initial value is false. Any non-zero value is interpreted as true.
UNPACK_PREMULTIPLY_ALPHA_WEBGL of type boolean
If set, then during any subsequent calls to texImage2D or texSubImage2D, the alpha channel of the source data, if present, is multiplied into the color channels during the data transfer. The initial value is false. Any non-zero value is interpreted as true.
UNPACK_COLORSPACE_CONVERSION_WEBGL of type unsigned long
If set to BROWSER_DEFAULT_WEBGL, then the browser's default colorspace conversion is applied during subsequent texImage2D and texSubImage2D calls takingHTMLImageElement. The precise conversions may be specific to both the browser and file type. If set to NONE, no colorspace conversion is applied. The initial value is BROWSER_DEFAULT_WEBGL.

6.8 Reading Pixels Outside the Framebuffer

In the WebGL API, functions which read the framebuffer (copyTexImage2DcopyTexSubImage2D, and readPixels) are defined to generate the RGBA value (0, 0, 0, 0) for any pixel which is outside of the bound framebuffer.

6.9 Stencil Separate Mask and Reference Value

In the WebGL API it is illegal to specify a different mask or reference value for front facing and back facing triangles in stencil operations. A call to drawArrays ordrawElements will generate an INVALID_OPERATION error if:

  • STENCIL_WRITEMASK != STENCIL_BACK_WRITEMASK (as specified by stencilMaskSeparate for the mask parameter associated with the FRONT and BACK values of face, respectively)
  • STENCIL_VALUE_MASK != STENCIL_BACK_VALUE_MASK (as specified by stencilFuncSeparate for the mask parameter associated with the FRONT and BACK values of face, respectively)
  • STENCIL_REF != STENCIL_BACK_REF (as specified by stencilFuncSeparate for the ref parameter associated with the FRONT and BACK values of face, respectively)

6.10 Vertex Attribute Data Stride

The WebGL API supports vertex attribute data strides up to 255 bytes. A call to vertexAttribPointer will generate an INVALID_VALUE error if the value for the stride parameter exceeds 255.

6.11 Viewport Depth Range

The WebGL API does not support depth ranges with where the near plane is mapped to a value greater than that of the far plane. A call to depthRange will generate anINVALID_OPERATION error if zNear is greater than zFar.

6.12 Blending With Constant Color

In the WebGL API, constant color and constant alpha cannot be used together as source and destination factors in the blend function. A call to blendFunc will generate anINVALID_OPERATION error if one of the two factors is set to CONSTANT_COLOR or ONE_MINUS_CONSTANT_COLOR and the other to CONSTANT_ALPHA orONE_MINUS_CONSTANT_ALPHA. A call to blendFuncSeparate will generate an INVALID_OPERATION error if srcRGB is set to CONSTANT_COLOR orONE_MINUS_CONSTANT_COLOR and dstRGB is set to CONSTANT_ALPHA or ONE_MINUS_CONSTANT_ALPHA or vice versa.

6.13 Fixed point support

The WebGL API does not support the GL_FIXED data type.

6.14 GLSL Constructs

Per Supported GLSL Constructs, identifiers starting with "webgl_" and "_webgl_" are reserved for use by WebGL.

6.15 Extension Queries

In the OpenGL ES 2.0 API, the available extensions are determined by calling glGetString(GL_EXTENSIONS), which returns a space-separated list of extension strings. In the WebGL API, the EXTENSIONS enumerant has been removed. Instead, getSupportedExtensions must be called to determine the set of available extensions.

6.16 Implementation Color Read Format and Type

In the OpenGL ES 2.0 API, the IMPLEMENTATION_COLOR_READ_FORMAT and IMPLEMENTATION_COLOR_READ_TYPE parameters are used to inform applications of an additional format and type combination that may be passed to ReadPixels, in addition to the required RGBA/UNSIGNED_BYTE pair. In WebGL 1.0, the supported format and type combinations to ReadPixels are documented in the Reading back pixels section. The IMPLEMENTATION_COLOR_READ_FORMAT andIMPLEMENTATION_COLOR_READ_TYPE enumerants have been removed.

6.17 Compressed Texture Support

The core WebGL specification does not define any supported compressed texture formats. Therefore, in the absence of any other extensions being enabled:

6.18 Maximum GLSL Token Size

The GLSL ES spec [GLES20GLSL] does not define a limit to the length of tokens. WebGL requires support of tokens up to 256 characters in length. Shaders containing tokens longer than 256 characters must fail to compile.

6.19 Characters Outside the GLSL Source Character Set

The GLSL ES spec [GLES20GLSL] defines the source character set for the OpenGL ES shading language to be ISO/IEC 646:1991, commonly called ASCII [ASCII]. If a string containing a character not in this set is passed to any of the shader-related entry points bindAttribLocationgetAttribLocationgetUniformLocation, orshaderSource, an INVALID_VALUE error will be generated. The exception is that any character allowed in an HTML DOMString [DOMSTRING] may be used in GLSL comments. Such use must not generate an error.

Some GLSL implementations disallow characters outside the ASCII range, even in comments. The WebGL implementation needs to prevent errors in such cases. The recommended technique is to preprocess the GLSL string, removing all comments, but maintaining the line numbering for debugging purposes by inserting newline characters as needed.

6.20 Maximum Nesting of Structures in GLSL Shaders

WebGL imposes a limit on the nesting of structures in GLSL shaders. Nesting occurs when a field in a struct refers to another struct type; the GLSL ES spec[GLES20GLSL] forbids embedded structure definitions. The fields in a top-level struct definition have a nesting level of 1.

WebGL requires support of a structure nesting level of 4. Shaders containing structures nested more than 4 levels deep must fail to compile.

6.21 Maximum Uniform and Attribute Location Lengths

WebGL imposes a limit of 256 characters on the lengths of uniform and attribute locations.

6.22 String Length Queries

In the WebGL API, the enumerants INFO_LOG_LENGTHSHADER_SOURCE_LENGTHACTIVE_UNIFORM_MAX_LENGTH, and ACTIVE_ATTRIB_MAX_LENGTHhave been removed. In the OpenGL ES 2.0 API, these enumerants are needed to determine the size of buffers passed to calls like glGetActiveAttrib. In the WebGL API, the analogous calls (getActiveAttribgetActiveUniformgetProgramInfoLoggetShaderInfoLog, and getShaderSource) all return DOMString.

6.23 Texture Type in TexSubImage2D Calls

In the WebGL API, the type argument passed to texSubImage2D must match the type used to originally define the texture object (i.e., using texImage2D).

6.24 Packing Restrictions for Uniforms and Varyings

The OpenGL ES Shading Language, Version 1.00 [GLES20GLSL], Appendix A, Section 7 "Counting of Varyings and Uniforms" defines a conservative algorithm for computing the storage required for all of the uniform and varying variables in a shader. The GLSL ES specification requires that if the packing algorithm defined in Appendix A succeeds, then the shader must succeed compilation on the target platform. The WebGL API further requires that this packing algorithm succeed for all shaders and programs submitted to the API.

Instead of using a fixed size grid of registers, the number of rows in the target architecture is determined in the following ways:

  • when counting uniform variables in a vertex shader: getParameter(MAX_VERTEX_UNIFORM_VECTORS)
  • when counting uniform variables in a fragment shader: getParameter(MAX_FRAGMENT_UNIFORM_VECTORS)
  • when counting varying variables: getParameter(MAX_VARYING_VECTORS)

If the packing algorithm fails either for the uniform variables of a shader or for the varying variables of a program, compilation or linking must fail.

7 References

7.1 Normative references

[CANVAS]
HTML5: The Canvas Element, World Wide Web Consortium (W3C).
[CANVASCONTEXTS]
Canvas Context Registry, WHATWG.
[TYPEDARRAYS]
Typed Array Specification: Editor's Draft, V. Vukicevic, K. Russell, May 2010.
[GLES20]
OpenGL ES Common Profile Specification Version 2.0.25, A. Munshi, J. Leech, November 2010.
[GLES20GLSL]
The OpenGL ES Shading Language Version 1.00, R. Simpson, May 2009.
[REGISTRY]
WebGL Extension Registry
[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF, March 1997.
[CSS]
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification, B. Bos, T. Celik, I. Hickson, H. W. Lie, June 2011.
[CORS]
Cross-Origin Resource Sharing, A. van Kesteren, July 2010.
[DOM4]
DOM4, A. van Kesteren, A. Gregor, Ms2ger.
[DOM3EVENTS]
Document Object Model (DOM) Level 3 Events Specification, Doug Schepers and Jacob Rossi. W3C.
[HTML]
HTML, I. Hickson, June 2011.
[WEBIDL]
Web IDL: W3C Editor’s Draft, C. McCormack.
[ASCII]
International Standard ISO/IEC 646:1991. Information technology - ISO 7-bit coded character set for information interchange
[DOMSTRING]
Document Object Model Core: The DOMString type, World Wide Web Consortium (W3C).

7.2 Other references

8 Acknowledgments

This specification is produced by the Khronos WebGL Working Group.

Special thanks to: Arun Ranganathan (Mozilla), Jon Leech, Kenneth Russell (Google), Kenneth Waters (Google), Mark Callow (HI), Mark Steele (Mozilla), Oliver Hunt (Apple), Tim Johansson (Opera), Vangelis Kokkevis (Google), Vladimir Vukicevic (Mozilla), Gregg Tavares (Google)

Additional thanks to: Alan Hudson (Yumetech), Bill Licea Kane (AMD), Boris Zbarsky (Mozilla), Cameron McCormack (Mozilla), Cedric Vivier (Zegami), Dan Gessel (Apple), David Ligon (Qualcomm), David Sheets (Ashima Arts), Glenn Maynard, Greg Roth (Nvidia), Jacob Strom (Ericsson), Kari Pulli (Nokia), Teddie Stenvi (ST-Ericsson), Neil Trevett (Nvidia), Per Wennersten (Ericsson), Per-Erik Brodin (Ericsson), Shiki Okasaka (Google), Tom Olson (ARM), Zhengrong Yao (Ericsson), and the members of the Khronos WebGL Working Group.

时间: 2024-10-15 06:05:50

WebGL 规范(WebGL Specification)的相关文章

WebGL 入门-WebGL简介与3D图形学

什么是WebGL? WebGL是一项使用JavaScript实现3D绘图的技术,浏览器无需插件支持,Web开发者就能借助系统显卡(GPU)进行编写代码从而呈现3D场景和对象. WebGL基于OpenGL ES 2.0,OpenGL ES 是 OpenGL 三维图形 API 的子集,针对手机.平板电脑和游戏主机等嵌入式设备而设计.浏览器内核通过对OpenGL API的封装,实现了通过JavaScript调用3D的能力.WebGL 内容作为 HTML5 中的Canvas标签的特殊上下文实现在浏览器中

基于Web的3D绘图标准-WebGL发布1.0版本

Khronos 组织在http://www.aliyun.com/zixun/aggregation/5469.html">游戏开发者大会发布了 WebGL 规范 1.0 正式版本,该版本带来了全新的 OpenGL ES 2.0,使得浏览器可通过 HTML5 和 JavaScript 进行识别,这表明 WebGL 将逐渐进入我们的视野.WebGL 是一种3D绘图标准,这种绘图技术标准允许把JavaScript和OpenGL ES 2.0结合在一起,通过增加OpenGL ES 2.0的一个J

《WebGL入门指南》——第1章,第1.1节WebGL——一个技术定义

1.1 WebGL--一个技术定义 WebGL入门指南 WebGL 标准是由科纳斯组织(Khronos Group)开发和维护的,该组织还是管理着 OpenGL.COLLADA等其他你也许早有耳闻的规范的标准组织.以下是科纳斯组织的网站上对WebGL的官方描述: WebGL是免授权费的,跨平台的应用程序接口API,它将OpenGL ES 2.0作为在HTML网页内的3D绘图环境,作为低级别文档对象模型接口开放.它使用OpenGL渲染语言GLSL ES,并可被整洁地与其他3D内容上层或下层的网页内

基于Web的3D绘图标准WebGL 1.0发布

Khronos 组织在游戏开发者大会发布了 WebGL 规范 1.0 正式版本,该版本带来了全新的 OpenGL ES 2.0,使得浏览器可通过 HTML5 和 JavaScript 进行识别,这表明 WebGL 将逐渐进入我们的视野. WebGL 是一种3D绘图标准,这种绘图技术标准允许把JavaScript和OpenGL ES 2.0结合在一起,通过增加OpenGL ES 2.0的一个JavaScript绑定,WebGL可以为HTML5 Canvas提供硬件3D加速渲染,这样Web开发人员就

CORS 专题

CORS(跨域资源共享,Cross-Origin Resource Sharing)CORS其实出现时间不短了,它在维基百科上的定义是:跨域资源共享(CORS )是一种网络浏览器的技术规范,它为Web服务器定义了一种方式,允许网页从不同的域访问其资源.而这种访问是被同源策略所禁止的.CORS系统定义了一种浏览器和服务器交互的方式来确定是否允许跨域请求. 它是一个妥协,有更大的灵活性,但比起简单地允许所有这些的要求来说更加安全. 比如,站点 http://domain-a.com 的某 HTML

iOS 在类实现定义中声明成员变量的怪异方式

WebGL 规范(WebGL Specification) 太阳火神的美丽人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:太阳火神的美丽人生 -  本博客专注于 敏捷开发及移动和物联设备研究:iOS.Android.Html5.Arduino.pcDuino,否则,出自本博客的文章拒绝转载或再转载,谢谢合作. 看看下面的用法,几年前系统地看过 Objective-C 2.0 的官方文档和那本老外

Zynga如何走向HTML5

  众所周知,Facebook一直在努力推进HTML5的发展,开源JSgamebench工具,首席技术官Bret Taylor也多次提到HTML5的重要性.甚至还有传闻说,可能将其所有智能手机应用程序进行重新编写,将这些应用变成采用更统一的HTML5编写.能在所有智能设备中使用的程序. 而实际上,Zynga德国公司堪称HTML5发展和创新思维的真正领导者,Paul Bakaus在新游戏大会(New Game Conference)上奉劝游戏开发者转投HTML5开发,"HTML5是游戏产业的未来&

《HTML5游戏编程核心技术与实战》——第2章 Canvas绘图

第2章 Canvas绘图 首先,我们需要学习的是HTML5中的canvas元素,canvas元素是HTML5中一个非常重要的元素,也是实现游戏的核心,canvas元素的诞生为HTML5能够支持较高性能的动画和游戏提供了可行性.HTML4中,如果要完成类似画板和游戏的功能,需要使用Flash,但Flash需要在浏览器中安装Flash插件才能提供相应功能.本章围绕canvas元素讲解以下几个主要内容(对于非常熟悉本章内容的读者可略过本章): 基本知识: 图形API: 图像API: 文本API: 坐标

《HTML5游戏编程核心技术与实战》一2.1 基本知识

2.1 基本知识 HTML5游戏编程核心技术与实战在HTML4时代,不安装插件的情况下,基于浏览器的绘图组件是最初由微软向W3C递交的VML(Vector Markup Language矢量标记语言)技术,但未被W3C采纳,只能在IE5.0及其后续版本中使用,后来VML和PGML(由Adobe和SUN提出)合并成SVG(Scalable Vector Graphics,可伸缩矢量图形)规范.SVG技术是基于XML的矢量图形绘制技术,对于普通的图像应用来说足够,但是对于性能要求较高的游戏渲染来说,