Java并发编程中使用Executors类创建和管理线程的用法_java

1. 类 Executors
Executors类可以看做一个“工具类”。援引JDK1.6 API中的介绍:
  此包中所定义的 Executor、ExecutorService、ScheduledExecutorService、ThreadFactory 和 Callable 类的工厂和实用方法。此类支持以下各种方法:
(1)创建并返回设置有常用配置字符串的 ExecutorService 的方法。
(2)创建并返回设置有常用配置字符串的 ScheduledExecutorService 的方法。
(3)创建并返回“包装的”ExecutorService 方法,它通过使特定于实现的方法不可访问来禁用重新配置。
(4)创建并返回 ThreadFactory 的方法,它可将新创建的线程设置为已知的状态。
(5)创建并返回非闭包形式的 Callable 的方法,这样可将其用于需要 Callable 的执行方法中。
    通过这个类能够获得多种线程池的实例,例如可以调用newSingleThreadExecutor()获得单线程的ExecutorService,调 用newFixedThreadPool()获得固定大小线程池的ExecutorService,等等。拿到ExecutorService可以做的事情就比 较多了,最简单的是用它来执行Runnable对象,也可以执行一些实现了Callable<T>的对象。用Thread的start()方 法没有返回值,如果该线程执行的方法有返回值那用ExecutorService就再好不过了,可以选择submit()、invokeAll()或者 invokeAny(),根据具体情况选择合适的方法即可。
此类中提供的一些方法有:
1.1 public static ExecutorService newCachedThreadPool()
创建一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们。对于执行很多短期异步任务的程序而言,这些线程池通常可提高程序性能。
 
1.2 public static ExecutorService newFixedThreadPool(int nThreads)
创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程。
 
1.3 public static ExecutorService newSingleThreadExecutor()
创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该线程。
 
这三个方法都可以配合接口ThreadFactory的实例一起使用。并且返回一个ExecutorService接口的实例。
2. 接口 ThreadFactory
根据需要创建新线程的对象。使用线程工厂就无需再手工编写对 new Thread 的调用了,从而允许应用程序使用特殊的线程子类、属性等等。
此接口最简单的实现就是:

class SimpleThreadFactory implements ThreadFactory {
  public Thread newThread(Runnable r) {
   return new Thread(r);
  }
 }

3. 接口ExecutorService
该接口提供了管理终止的方法。
4.创建标准线程池启动线程
4.1 提供一个简单的实现Runnable接口的线程
MyThread.java

package com.zj.concurrency.executors;

public class MyThread implements Runnable {
  private int count = 1, number;

  public MyThread(int num) {
    number = num;
    System.out.println("Create Thread-" + number);
  }

  public void run() {
    while (true) {
      System.out.println("Thread-" + number + " run " + count+" time(s)");
      if (++count == 3)
       return;
    }
  }
}

这个线程会打印出相应的创建和执行信息。
 
4.2使用CachedThreadPool启动线程
CachedThreadPool.java

package com.zj.concurrency.executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class CachedThreadPool {
  public static void main(String[] args) {
    ExecutorService exec = Executors.newCachedThreadPool();
    for (int i = 0; i < 5; i++)
      exec.execute(new MyThread(i));
    exec.shutdown();
  }
}

结果:

Create Thread-0
Create Thread-1
Create Thread-2
Create Thread-3
Thread-0 run 1 time(s)
Thread-0 run 2 time(s)
Thread-1 run 1 time(s)
Thread-1 run 2 time(s)
Thread-2 run 1 time(s)
Thread-2 run 2 time(s)
Create Thread-4
Thread-4 run 1 time(s)
Thread-4 run 2 time(s)
Thread-3 run 1 time(s)
Thread-3 run 2 time(s)

 
4.3 使用FixedThreadPool启动线程

FixedThreadPool.java
package com.zj.concurrency.executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class FixedThreadPool {
  public static void main(String[] args) {
    ExecutorService exec = Executors.newFixedThreadPool(2);
    for (int i = 0; i < 5; i++)
      exec.execute(new MyThread(i));
    exec.shutdown();
  }
}

结果:

Create Thread-0
Create Thread-1
Create Thread-2
Create Thread-3
Create Thread-4
Thread-0 run 1 time(s)
Thread-0 run 2 time(s)
Thread-2 run 1 time(s)
Thread-2 run 2 time(s)
Thread-3 run 1 time(s)
Thread-3 run 2 time(s)
Thread-4 run 1 time(s)
Thread-4 run 2 time(s)
Thread-1 run 1 time(s)
Thread-1 run 2 time(s)

 
4.4 使用SingleThreadExecutor启动线程
SingleThreadExecutor.java

package com.zj.concurrency.executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class SingleThreadExecutor {
  public static void main(String[] args) {
    ExecutorService exec = Executors.newSingleThreadExecutor();
    for (int i = 0; i < 5; i++)
      exec.execute(new MyThread(i));
    exec.shutdown();
  }
}

结果:

Create Thread-0
Create Thread-1
Create Thread-2
Create Thread-3
Create Thread-4
Thread-0 run 1 time(s)
Thread-0 run 2 time(s)
Thread-1 run 1 time(s)
Thread-1 run 2 time(s)
Thread-2 run 1 time(s)
Thread-2 run 2 time(s)
Thread-3 run 1 time(s)
Thread-3 run 2 time(s)
Thread-4 run 1 time(s)
Thread-4 run 2 time(s)

5.配合ThreadFactory接口的使用
我们试图给线程加入daemon和priority的属性设置。
5.1设置后台线程属性
DaemonThreadFactory.java

package com.zj.concurrency.executors.factory;
import java.util.concurrent.ThreadFactory;

public class DaemonThreadFactory implements ThreadFactory {
  public Thread newThread(Runnable r) {
    Thread t = new Thread(r);
    t.setDaemon(true);
    return t;
  }
}

 
5.2 设置优先级属性
最高优先级MaxPriorityThreadFactory.java

package com.zj.concurrency.executors.factory;
import java.util.concurrent.ThreadFactory;

public class MaxPriorityThreadFactory implements ThreadFactory {
  public Thread newThread(Runnable r) {
    Thread t = new Thread(r);
    t.setPriority(Thread.MAX_PRIORITY);
    return t;
  }
}

最低优先级MinPriorityThreadFactory.java

package com.zj.concurrency.executors.factory;
import java.util.concurrent.ThreadFactory;

public class MinPriorityThreadFactory implements ThreadFactory {
  public Thread newThread(Runnable r) {
    Thread t = new Thread(r);
    t.setPriority(Thread.MIN_PRIORITY);
    return t;
  }
}

 
5.3启动带有属性设置的线程
ExecFromFactory.java

package com.zj.concurrency.executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import com.zj.concurrency.executors.factory.DaemonThreadFactory;
import com.zj.concurrency.executors.factory.MaxPriorityThreadFactory;
import com.zj.concurrency.executors.factory.MinPriorityThreadFactory;

public class ExecFromFactory {
  public static void main(String[] args) throws Exception {
    ExecutorService defaultExec = Executors.newCachedThreadPool();
    ExecutorService daemonExec = Executors
       .newCachedThreadPool(new DaemonThreadFactory());
    ExecutorService maxPriorityExec = Executors
       .newCachedThreadPool(new MaxPriorityThreadFactory());
    ExecutorService minPriorityExec = Executors
       .newCachedThreadPool(new MinPriorityThreadFactory());
    for (int i = 0; i < 10; i++)
      daemonExec.execute(new MyThread(i));
    for (int i = 10; i < 20; i++)
      if (i == 10)
       maxPriorityExec.execute(new MyThread(i));
      else if (i == 11)
       minPriorityExec.execute(new MyThread(i));
      else
       defaultExec.execute(new MyThread(i));
  }
}

结果:

Create Thread-0
Create Thread-1
Create Thread-2
Create Thread-3
Thread-0 run 1 time(s)
Thread-0 run 2 time(s)
Thread-1 run 1 time(s)
Thread-1 run 2 time(s)
Thread-2 run 1 time(s)
Thread-2 run 2 time(s)
Create Thread-4
Thread-4 run 1 time(s)
Thread-4 run 2 time(s)
Create Thread-5
Thread-5 run 1 time(s)
Thread-5 run 2 time(s)
Create Thread-6
Create Thread-7
Thread-7 run 1 time(s)
Thread-7 run 2 time(s)
Create Thread-8
Thread-8 run 1 time(s)
Thread-8 run 2 time(s)
Create Thread-9
Create Thread-10
Thread-10 run 1 time(s)
Thread-10 run 2 time(s)
Create Thread-11
Thread-9 run 1 time(s)
Thread-9 run 2 time(s)
Thread-6 run 1 time(s)
Thread-6 run 2 time(s)
Thread-3 run 1 time(s)
Thread-3 run 2 time(s)
Create Thread-12
Create Thread-13
Create Thread-14
Thread-12 run 1 time(s)
Thread-12 run 2 time(s)
Thread-13 run 1 time(s)
Thread-13 run 2 time(s)
Create Thread-15
Thread-15 run 1 time(s)
Thread-15 run 2 time(s)
Create Thread-16
Thread-16 run 1 time(s)
Thread-16 run 2 time(s)
Create Thread-17
Create Thread-18
Create Thread-19
Thread-14 run 1 time(s)
Thread-14 run 2 time(s)
Thread-17 run 1 time(s)
Thread-17 run 2 time(s)
Thread-18 run 1 time(s)
Thread-18 run 2 time(s)
Thread-19 run 1 time(s)
Thread-19 run 2 time(s)
Thread-11 run 1 time(s)
Thread-11 run 2 time(s)

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索java
, 并发
, 线程
, 多线程
Executors
多线程并发编程、java多线程并发编程、scala 多线程并发编程、linux多线程并发编程、多线程并发服务器编程,以便于您获取更多的相关知识。

时间: 2024-08-31 21:13:01

Java并发编程中使用Executors类创建和管理线程的用法_java的相关文章

Java多线程编程中使用Condition类操作锁的方法详解_java

Condition的作用是对锁进行更精确的控制.Condition中的await()方法相当于Object的wait()方法,Condition中的signal()方法相当于Object的notify()方法,Condition中的signalAll()相当于Object的notifyAll()方法.不同的是,Object中的wait(),notify(),notifyAll()方法是和"同步锁"(synchronized关键字)捆绑使用的:而Condition是需要与"互斥

Java并发编程中的阻塞和中断

>>线程的状态转换 线程的状态转换是线程控制的基础,下面这张图片非常直观的展示了线程的状态转换: 线程间的状态转换:  1. 新建(new):新创建了一个线程对象. 2. 可运行(runnable):线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法.该状态的线程位于可运行线程池中,等待被线程调度选中,获取cpu 的使用权 . 3. 运行(running):可运行状态(runnable)的线程获得了cpu 时间片(timeslice) ,执行程序代码. 4. 阻塞(b

java多线程编程之使用thread类创建线程_java

在Java中创建线程有两种方法:使用Thread类和使用Runnable接口.在使用Runnable接口时需要建立一个Thread实例.因此,无论是通过Thread类还是Runnable接口建立线程,都必须建立Thread类或它的子类的实例.Thread类的构造方法被重载了八次,构造方法如下: 复制代码 代码如下: public Thread( );public Thread(Runnable target);public Thread(String name);public Thread(Ru

Java并发编程中的生产者与消费者模型简述_java

概述对于多线程程序来说,生产者和消费者模型是非常经典的模型.更加准确的说,应该叫"生产者-消费者-仓库模型".离开了仓库,生产者.消费者就缺少了共用的存储空间,也就不存在并非协作的问题了. 示例定义一个场景.一个仓库只允许存放10件商品,生产者每次可以向其中放入一个商品,消费者可以每次从其中取出一个商品.同时,需要注意以下4点: 1.  同一时间内只能有一个生产者生产,生产方法需要加锁synchronized. 2.  同一时间内只能有一个消费者消费,消费方法需要加锁synchroni

Java并发编程中构建自定义同步工具_java

当Java类库没有提供适合的同步工具时,就需要构建自定义同步工具. 可阻塞状态依赖操作的结构 复制代码 代码如下: acquir lock on object state;//请求获取锁 while(precondition does not hold){//没有满足前提条件    release lock;//先释放锁    wait until precondition might hold;//等待满足前提条件    optionlly fail if interrupted or tim

Java设计模式编程中简单工厂与抽象工厂模式的使用实例_java

简单工厂模式类图 通过一个工厂类,以一个条件来创建对应的对象 //业务功能 public interface ICalculation { double getResult(double numA, double numB); } public class CalcAdd implements ICalculation { @Override public double getResult(double numA, double numB) { System.out.println("加法&qu

《Java并发编程的艺术》一一2.1 volatile的应用

2.1 volatile的应用 在多线程并发编程中synchronized和volatile都扮演着重要的角色,volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的"可见性".可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值.如果volatile变量修饰符使用恰当的话,它比synchronized的使用和执行成本更低,因为它不会引起线程上下文的切换和调度.本文将深入分析在硬件层面上Intel处理器是如何实现volatile的,

《Java并发编程的艺术》一一3.5 锁的内存语义

3.5 锁的内存语义 众所周知,锁可以让临界区互斥执行.这里将介绍锁的另一个同样重要,但常常被忽视的功能:锁的内存语义.3.5.1 锁的释放-获取建立的happens-before关系 锁是Java并发编程中最重要的同步机制.锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息. 下面是锁释放-获取的示例代码. class MonitorExample { int a = 0; public synchronized void writer() { // 1 a++; //

Java 并发编程学习笔记之核心理论基础_java

并发编程是Java程序员最重要的技能之一,也是最难掌握的一种技能.它要求编程者对计算机最底层的运作原理有深刻的理解,同时要求编程者逻辑清晰.思维缜密,这样才能写出高效.安全.可靠的多线程并发程序.本系列会从线程间协调的方式(wait.notify.notifyAll).Synchronized及Volatile的本质入手,详细解释JDK为我们提供的每种并发工具和底层实现机制.在此基础上,我们会进一步分析java.util.concurrent包的工具类,包括其使用方式.实现源码及其背后的原理.本