Linux系统休眠(System Suspend)和设备中断处理

一、设备IRQ的suspend和resume

主要解决这样一个问题:在系统休眠过程中,如何suspend设备中断(IRQ)?在从休眠中唤醒的过程中,如何resume设备IRQ?

一般而言,在系统suspend过程的后期,各个设备的IRQ (interrupt request line)会被disable掉。具体的时间点是在各个设备的late suspend阶段之后。代码如下(删除了部分无关代码):


  1. static int suspend_enter(suspend_state_t state, bool *wakeup) 
  2.  
  3. {…… 
  4.  
  5. error = dpm_suspend_late(PMSG_SUSPEND);-----late suspend阶段 
  6.  
  7. error = platform_suspend_prepare_late(state); 
  8.  
  9. 下面的代码中会disable各个设备的irq 
  10.  
  11. error = dpm_suspend_noirq(PMSG_SUSPEND);----进入noirq的阶段 
  12.  
  13. error = platform_suspend_prepare_noirq(state); 
  14.  
  15. …… 
  16.  
  17. }  

在dpm_suspend_noirq函数中,会针对系统中的每一个device,依次调用device_suspend_noirq来执行该设备noirq情况下的suspend callback函数,当然,在此之前会调用suspend_device_irqs函数来disable所有设备的irq。

之所以这么做,其思路是这样的:在各个设备驱动完成了late suspend之后,按理说这些已经被suspend的设备不应该再触发中断了。如果还有一些设备没有被正确的suspend,那么我们最好的策略是mask该设备的irq,从而阻止中断的递交。此外,在过去的代码中(指interrupt handler),我们对设备共享IRQ的情况处理的不是很好,存在这样的问题:在共享IRQ的设备们完成suspend之后,如果有中断触发,这时候设备驱动的interrupt handler并没有准备好。在有些场景下,interrupt handler会访问已经suspend设备的IO地址空间,从而导致不可预知的issue。这些issue很难debug,因此,我们引入了suspend_device_irqs()以及设备noirq阶段的callback函数。

系统resume过程中,在各个设备的early resume过程之前,各个设备的IRQ会被重新打开,具体代码如下(删除了部分无关代码):


  1. static int suspend_enter(suspend_state_t state, bool *wakeup) 
  2.  
  3. {…… 
  4.  
  5. platform_resume_noirq(state);----首先执行noirq阶段的resume 
  6.  
  7. dpm_resume_noirq(PMSG_RESUME);------在这里会恢复irq,然后进入early resume阶段 
  8.  
  9. platform_resume_early(state); 
  10.  
  11. dpm_resume_early(PMSG_RESUME); 
  12.  
  13. ……}  

在dpm_resume_noirq函数中,会调用各个设备驱动的noirq callback,在此之后,调用resume_device_irqs函数,完成各个设备irq的enable。

二、关于IRQF_NO_SUSPEND Flag

当然,有些中断需要在整个系统的suspend-resume过程中(包括在noirq阶段,包括将nonboot CPU推送到offline状态以及系统resume后,将其重新设置为online的阶段)保持能够触发的状态。一个简单的例子就是timer中断,此外IPI以及一些特殊目的设备中断也需要如此。

在中断申请的时候,IRQF_NO_SUSPEND flag可以用来告知IRQ subsystem,这个中断就是上一段文字中描述的那种中断:需要在系统的suspend-resume过程中保持enable状态。有了这个flag,suspend_device_irqs并不会disable该IRQ,从而让该中断在随后的suspend和resume过程中,保持中断开启。当然,这并不能保证该中断可以将系统唤醒。如果想要达到唤醒的目的,请调用enable_irq_wake。

需要注意的是:IRQF_NO_SUSPEND flag影响使用该IRQ的所有外设(一个IRQ可以被多个外设共享,不过ARM中不会这么用)。如果一个IRQ被多个外设共享,并且各个外设都注册了对应的interrupt handler,如果其一在申请中断的时候使用了IRQF_NO_SUSPEND flag,那么在系统suspend的时候(指suspend_device_irqs之后,按理说各个IRQ已经被disable了),所有该IRQ上的各个设备的interrupt handler都可以被正常的被触发执行,即便是有些设备在调用request_irq(或者其他中断注册函数)的时候没有设定IRQF_NO_SUSPEND flag。正因为如此,我们应该尽可能的避免同时使用IRQF_NO_SUSPEND 和IRQF_SHARED这两个flag。

三、系统中断唤醒接口:enable_irq_wake() 和 disable_irq_wake()

有些中断可以将系统从睡眠状态中唤醒,我们称之“可以唤醒系统的中断”,当然,“可以唤醒系统的中断”需要配置才能启动唤醒系统这样的功能。这样的中断一般在工作状态的时候就是作为普通I/O interrupt出现,只要在准备使能唤醒系统功能的时候,才会发起一些特别的配置和设定。

这样的配置和设定有可能是和硬件系统(例如SOC)上的信号处理逻辑相关的,我们可以考虑下面的HW block图:

外设的中断信号被送到“通用的中断信号处理模块”和“特定中断信号接收模块”。正常工作的时候,我们会turn on“通用的中断信号处理模块”的处理逻辑,而turn off“特定中断信号接收模块” 的处理逻辑。但是,在系统进入睡眠状态的时候,有可能“通用的中断信号处理模块”已经off了,这时候,我们需要启动“特定中断信号接收模块”来接收中断信号,从而让系统suspend-resume模块(它往往是suspend状态时候唯一能够工作的HW block了)可以正常的被该中断信号唤醒。一旦唤醒,我们最好是turn off“特定中断信号接收模块”,让外设的中断处理回到正常的工作模式,同时,也避免了系统suspend-resume模块收到不必要的干扰。

IRQ子系统提供了两个接口函数来完成这个功能:enable_irq_wake()函数用来打开该外设中断线通往系统电源管理模块(也就是上面的suspend-resume模块)之路,另外一个接口是disable_irq_wake(),用来关闭该外设中断线通往系统电源管理模块路径上的各种HW block。

调用了enable_irq_wake会影响系统suspend过程中的suspend_device_irqs处理,代码如下:


  1. static bool suspend_device_irq(struct irq_desc *desc) 
  2.  
  3.  
  4. …… 
  5.  
  6. if (irqd_is_wakeup_set(&desc->irq_data)) { 
  7.  
  8. irqd_set(&desc->irq_data, IRQD_WAKEUP_ARMED); 
  9.  
  10. return true; 
  11.  
  12.  
  13. 省略Disable 中断的代码 
  14.  
  15. }  

也就是说,一旦调用enable_irq_wake设定了该设备的中断作为系统suspend的唤醒源,那么在该外设的中断不会被disable,只是被标记一个IRQD_WAKEUP_ARMED的标记。对于那些不是wakeup source的中断,在suspend_device_irq 函数中会标记IRQS_SUSPENDED并disable该设备的irq。在系统唤醒过程中(resume_device_irqs),被diable的中断会重新enable。

当然,如果在suspend的过程中发生了某些事件(例如wakeup source产生了有效信号),从而导致本次suspend abort,那么这个abort事件也会通知到PM core模块。事件并不需要被立刻通知到PM core模块,一般而言,suspend thread会在某些点上去检查pending的wakeup event。

在系统suspend的过程中,每一个来自wakeup source的中断都会终止suspend过程或者将系统唤醒(如果系统已经进入suspend状态)。但是,在执行了suspend_device_irqs之后,普通的中断被屏蔽了,这时候,即便HW触发了中断信号也无法执行其interrupt handler。作为wakeup source的IRQ会怎样呢?虽然它的中断没有被mask掉,但是其interrupt handler也不会执行(这时候的HW Signal只是用来唤醒系统)。唯一有机会执行的interrupt handler是那些标记IRQF_NO_SUSPEND flag的IRQ,因为它们的中断始终是enable的。当然,这些中断不应该调用enable_irq_wake进行唤醒源的设定。

四、Interrupts and Suspend-to-Idle

Suspend-to-idle (也被称为"freeze" 状态)是一个相对比较新的系统电源管理状态,相关代码如下:


  1. static int suspend_enter(suspend_state_t state, bool *wakeup) 
  2.  
  3.  
  4. …… 
  5.  
  6. 各个设备的late suspend阶段 
  7.  
  8. 各个设备的noirq suspend阶段 
  9.  
  10. if (state == PM_SUSPEND_FREEZE) { 
  11.  
  12. freeze_enter(); 
  13.  
  14. goto Platform_wake; 
  15.  
  16.  
  17. …… 
  18.  
  19. }  

Freeze和suspend的前面的操作基本是一样的:首先冻结系统中的进程,然后是suspend系统中的形形色色的device,不一样的地方在noirq suspend完成之后,freeze不会disable那些non-BSP的处理器和syscore suspend阶段,而是调用freeze_enter函数,把所有的处理器推送到idle状态。这时候,任何的enable的中断都可以将系统唤醒。而这也就意味着那些标记IRQF_NO_SUSPEND(其IRQ没有在suspend_device_irqs过程中被mask掉)是有能力将处理器从idle状态中唤醒(不过,需要注意的是:这种信号并不会触发一个系统唤醒信号),而普通中断由于其IRQ被disable了,因此无法唤醒idle状态中的处理器。

那些能够唤醒系统的wakeup interrupt呢?由于其中断没有被mask掉,因此也可以将系统从suspend-to-idle状态中唤醒。整个过程和将系统从suspend状态中唤醒一样,唯一不同的是:将系统从freeze状态唤醒走的中断处理路径,而将系统从suspend状态唤醒走的唤醒处理路径,需要电源管理HW BLOCK中特别的中断处理逻辑的参与。

五、IRQF_NO_SUSPEND 标志和enable_irq_wake函数不能同时使用

针对一个设备,在申请中断的时候使用IRQF_NO_SUSPEND flag,又同时调用enable_irq_wake设定唤醒源是不合理的,主要原因如下:

1、如果IRQ没有共享,使用IRQF_NO_SUSPEND flag说明你想要在整个系统的suspend-resume过程中(包括suspend_device_irqs之后的阶段)保持中断打开以便正常的调用其interrupt handler。而调用enable_irq_wake函数则说明你想要将该设备的irq信号设定为中断源,因此并不期望调用其interrupt handler。而这两个需求明显是互斥的。

2、IRQF_NO_SUSPEND 标志和enable_irq_wake函数都不是针对一个interrupt handler的,而是针对该IRQ上的所有注册的handler的。在一个IRQ上共享唤醒源以及no suspend中断源是比较荒谬的。

不过,在非常特殊的场合下,一个IRQ可以被设定为wakeup source,同时也设定IRQF_NO_SUSPEND 标志。为了代码逻辑正确,该设备的驱动代码需要满足一些特别的需求。

本文作者:佚名

来源:51CTO

时间: 2025-01-02 11:31:31

Linux系统休眠(System Suspend)和设备中断处理的相关文章

linux系统如何休眠

  linux系统休眠 在linux下,我喜欢用命令让系统进入休眠: $ echo mem | sudo tee /sys/power/state 当然,不用每次都要敲这么一长串,可以把它加入到一个脚本中. 再将该脚本命令加入到/etc/sudoers文件,就可以避免每次都需要输入用户密码了. 有同事搞不清楚为什么下面的命令执行不成功: $ sudo echo mem > /sys/power/state 上面这个shell命令的流程是:fork一个子进程,等待 → shell关闭标准输出,打开

ubuntu-linux系统利用libudev获取USB设备的VID和PID?请各位大侠帮一忙,谢谢!

问题描述 linux系统利用libudev获取USB设备的VID和PID?请各位大侠帮一忙,谢谢! 我在Ubuntu14.04终端下lsusb可以看到识别到的USB设备,但是Unable to find parent usb device.我的设备会虚拟出串口,如ttyUSB0,ttyUSB1,ttyUSB2,我想知道如何获取该设备的VID和PID,通过网上找的代码,不知道如何修改以下两个函数的相关参数? udev_enumerate_add_match_subsystem(enumerate,

浅析Linux系统下安装wetty和使用说明_linux shell

以下内容从wetty简介.环境准备.wetty安装.以及验证方面给大家分析,具体详情请看下文吧. 1. Wetty简介 Wetty是使用Node.js和websockets开发的一个开源Web-based SSH.关于Web-based SSH的更多资料请参考https://en.wikipedia.org/wiki/Web-based_SSH. 而wetty的资料请参考https://github.com/krishnasrinivas/wetty. 2. 环境准备 因为wetty是使用Nod

在Linux系统中存储设备的两种表示方法

摘要: 硬盘和硬盘分区在Linux都表示为设备,按我们通俗的说法来说,就是怎么来表示或描述硬盘和或硬盘分区,但这种描述应该是科学和具体的:比如IDE硬盘,在Linux 可以表示为 /dev/hda./dev/hdb ... :SCSI 接口的硬盘.SATA接口的硬盘表示为/dev/sda./dev/sdb ... ... :而IDE接口的硬盘/dev/hda,也可以表示为hd0 ,而 SCSI 接口的如果是 /dev/sda ,另一种表示方法是sd0: 理解两种表示方法有何用?至少GRUB引导管

Linux系统platform设备驱动全透析

1.1 platform总线.设备与驱动 在Linux 2.6的设备驱动模型中,关心总线.设备和驱动这3个实体,总线将设备和驱动绑定.在系统每注册一个设备的时候,会寻找与之匹配的驱动:相反的,在系统每注册一个驱动的时候,会寻找与之匹配的设备,而匹配由总线完成. 一个现实的Linux设备和驱动通常都需要挂接在一种总线上,对于本身依附于PCI.USB.I2C.SPI等的设备而言,这自然不是问题,但是在嵌入式系统里面,SoC系统中集成的独立的外设控制器.挂接在SoC内存空间的外设等确不依附于此类总线.

Linux系统下卸载USB设备的方法

Linux系统下通常都会自动挂载USB设备,如果没有自动挂载的话就需要自己手动挂载USB设备了,那么Linux下要如何挂载USB设备呢?不需要的时候又要如何卸载呢?一起来了解下吧. 在挂载之前需要确定下列三种信息 1.要挂载对象的文件系统类型 2.要挂载对象的设备名称 3.确定挂载点 挂载时使用mount命令: 格式:mount [-参数] [设备名称] [挂载点] 我们常见的USB设备格式是:FAT32格式.NFTS格式等. ext2 linux目前常用的文件系统 msdos MS-DOS的f

《嵌入式设备驱动开发精解》——1.2 基于ARM处理器的嵌入式Linux系统

1.2 基于ARM处理器的嵌入式Linux系统 嵌入式Linux应用开发完全手册 1.2.1 ARM处理器介绍 1.ARM的概念 嵌入式处理器种类繁多,有ARM.MIPS.PPC等多种架构.ARM处理器的文档丰富,各类嵌入式软件大多(往往首选)支持ARM处理器,使用ARM开发板来学习嵌入式开发是个好选择.基于不同架构CPU的开发是相通的,掌握ARM架构之后,在使用其他CPU时也会很快上手.当然,作为产品进行选材时,需要考虑的因素就非常多了,这不在本书的介绍范围之内. ARM(Advanced R

Linux系统如何挂载外接设备

  Linux系统是个命令行的系统,这是大家众所周知的事情,不管任何操作都需要相应的命令来执行,所以用户若想要挂载光驱.U盘或是软驱,都需要找到相应的命令,所以最好的办法是找到最高命令,这样对电脑不管怎么样的操作都可以随意执行了.今天小编想和大家探讨的论题是如何在Linux系统上挂载外接设备的方法,大家也许不知道的是,有自动挂载和手动挂载两种,都可以达到同样的效果,只不过操作的方式有所区别,下面就由小编为大家一一讲解具体的操作步骤吧! mount -t iso9660 /dev/cdrom /m

如何获得Linux系统的内置模块和设备驱动列表

  提问:我想要知道Linux系统中内核内置的模块,以及每个模块有哪些参数.有什么方法可以得到内置模块和设备驱动的列表,以及它们的详细信息呢? 现代Linux内核正在随着时间变化而迅速增长,以支持大量的硬件.文件系统和网络功能.在此期间,"可加载模块(loadable kernel modules,[LKM])"的引入防止内核变得越来越臃肿,以及在不同的环境中灵活地扩展功能及硬件支持,而不必重新构建内核. 最新的Linux发行版的内核只带了相对较小的"内置模块(built-i