由ArrayList来深入理解Java中的fail-fast机制_java

1. fail-fast简介
“快速失败”也就是fail-fast,它是Java集合的一种错误检测机制。某个线程在对collection进行迭代时,不允许其他线程对该collection进行结构上的修改。
例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast。
迭代器的快速失败行为无法得到保证,它不能保证一定会出现该错误,因此,ConcurrentModificationException应该仅用于检测 bug。
Java.util包中的所有集合类都是快速失败的,而java.util.concurrent包中的集合类都是安全失败的;
快速失败的迭代器抛出ConcurrentModificationException,而安全失败的迭代器从不抛出这个异常。

2 fail-fast示例
示例代码:(FastFailTest.java)

import java.util.*;
import java.util.concurrent.*;

/*
 * @desc java集合中Fast-Fail的测试程序。
 *
 * fast-fail事件产生的条件:当多个线程对Collection进行操作时,若其中某一个线程通过iterator去遍历集合时,该集合的内容被其他线程所改变;则会抛出ConcurrentModificationException异常。
 * fast-fail解决办法:通过util.concurrent集合包下的相应类去处理,则不会产生fast-fail事件。
 *
 * 本例中,分别测试ArrayList和CopyOnWriteArrayList这两种情况。ArrayList会产生fast-fail事件,而CopyOnWriteArrayList不会产生fast-fail事件。
 * (01) 使用ArrayList时,会产生fast-fail事件,抛出ConcurrentModificationException异常;定义如下:
 *   private static List<String> list = new ArrayList<String>();
 * (02) 使用时CopyOnWriteArrayList,不会产生fast-fail事件;定义如下:
 *   private static List<String> list = new CopyOnWriteArrayList<String>();
 *
 * @author skywang
 */
public class FastFailTest {

 private static List<String> list = new ArrayList<String>();
 //private static List<String> list = new CopyOnWriteArrayList<String>();
 public static void main(String[] args) {

  // 同时启动两个线程对list进行操作!
  new ThreadOne().start();
  new ThreadTwo().start();
 }

 private static void printAll() {
  System.out.println("");

  String value = null;
  Iterator iter = list.iterator();
  while(iter.hasNext()) {
   value = (String)iter.next();
   System.out.print(value+", ");
  }
 }

 /**
  * 向list中依次添加0,1,2,3,4,5,每添加一个数之后,就通过printAll()遍历整个list
  */
 private static class ThreadOne extends Thread {
  public void run() {
   int i = 0;
   while (i<6) {
    list.add(String.valueOf(i));
    printAll();
    i++;
   }
  }
 }

 /**
  * 向list中依次添加10,11,12,13,14,15,每添加一个数之后,就通过printAll()遍历整个list
  */
 private static class ThreadTwo extends Thread {
  public void run() {
   int i = 10;
   while (i<16) {
    list.add(String.valueOf(i));
    printAll();
    i++;
   }
  }
 }

}

运行结果
运行该代码,抛出异常java.util.ConcurrentModificationException!即,产生fail-fast事件!
结果说明
(01) FastFailTest中通过 new ThreadOne().start() 和 new ThreadTwo().start() 同时启动两个线程去操作list。
ThreadOne线程:向list中依次添加0,1,2,3,4,5。每添加一个数之后,就通过printAll()遍历整个list。
ThreadTwo线程:向list中依次添加10,11,12,13,14,15。每添加一个数之后,就通过printAll()遍历整个list。
(02) 当某一个线程遍历list的过程中,list的内容被另外一个线程所改变了;就会抛出ConcurrentModificationException异常,产生fail-fast事件。

3. fail-fast解决办法
fail-fast机制,是一种错误检测机制。它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
所以,本例中只需要将ArrayList替换成java.util.concurrent包下对应的类即可。 即,将代码
private static List<String> list = new ArrayList<String>();
替换为
private static List<String> list = new CopyOnWriteArrayList<String>();
则可以解决该办法。

4. fail-fast原理
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
package java.util;

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {

 ...

 // AbstractList中唯一的属性
 // 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1
 protected transient int modCount = 0;

 // 返回List对应迭代器。实际上,是返回Itr对象。
 public Iterator<E> iterator() {
  return new Itr();
 }

 // Itr是Iterator(迭代器)的实现类
 private class Itr implements Iterator<E> {
  int cursor = 0;

  int lastRet = -1;

  // 修改数的记录值。
  // 每次新建Itr()对象时,都会保存新建该对象时对应的modCount;
  // 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等;
  // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
  int expectedModCount = modCount;

  public boolean hasNext() {
   return cursor != size();
  }

  public E next() {
   // 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等;
   // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
   checkForComodification();
   try {
    E next = get(cursor);
    lastRet = cursor++;
    return next;
   } catch (IndexOutOfBoundsException e) {
    checkForComodification();
    throw new NoSuchElementException();
   }
  }

  public void remove() {
   if (lastRet == -1)
    throw new IllegalStateException();
   checkForComodification();

   try {
    AbstractList.this.remove(lastRet);
    if (lastRet < cursor)
     cursor--;
    lastRet = -1;
    expectedModCount = modCount;
   } catch (IndexOutOfBoundsException e) {
    throw new ConcurrentModificationException();
   }
  }

  final void checkForComodification() {
   if (modCount != expectedModCount)
    throw new ConcurrentModificationException();
  }
 }

 ...
}

从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()。若 “modCount 不等于 expectedModCount”,则抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中,我们知道 expectedModCount 在创建Itr对象时,被赋值为 modCount。通过Itr,我们知道:expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
接下来,我们查看ArrayList的源码,来看看modCount是如何被修改的。

package java.util;

public class ArrayList<E> extends AbstractList<E>
  implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{

 ...

 // list中容量变化时,对应的同步函数
 public void ensureCapacity(int minCapacity) {
  modCount++;
  int oldCapacity = elementData.length;
  if (minCapacity > oldCapacity) {
   Object oldData[] = elementData;
   int newCapacity = (oldCapacity * 3)/2 + 1;
   if (newCapacity < minCapacity)
    newCapacity = minCapacity;
   // minCapacity is usually close to size, so this is a win:
   elementData = Arrays.copyOf(elementData, newCapacity);
  }
 }

 // 添加元素到队列最后
 public boolean add(E e) {
  // 修改modCount
  ensureCapacity(size + 1); // Increments modCount!!
  elementData[size++] = e;
  return true;
 }

 // 添加元素到指定的位置
 public void add(int index, E element) {
  if (index > size || index < 0)
   throw new IndexOutOfBoundsException(
   "Index: "+index+", Size: "+size);

  // 修改modCount
  ensureCapacity(size+1); // Increments modCount!!
  System.arraycopy(elementData, index, elementData, index + 1,
    size - index);
  elementData[index] = element;
  size++;
 }

 // 添加集合
 public boolean addAll(Collection<? extends E> c) {
  Object[] a = c.toArray();
  int numNew = a.length;
  // 修改modCount
  ensureCapacity(size + numNew); // Increments modCount
  System.arraycopy(a, 0, elementData, size, numNew);
  size += numNew;
  return numNew != 0;
 }

 // 删除指定位置的元素
 public E remove(int index) {
  RangeCheck(index);

  // 修改modCount
  modCount++;
  E oldValue = (E) elementData[index];

  int numMoved = size - index - 1;
  if (numMoved > 0)
   System.arraycopy(elementData, index+1, elementData, index, numMoved);
  elementData[--size] = null; // Let gc do its work

  return oldValue;
 }

 // 快速删除指定位置的元素
 private void fastRemove(int index) {

  // 修改modCount
  modCount++;
  int numMoved = size - index - 1;
  if (numMoved > 0)
   System.arraycopy(elementData, index+1, elementData, index,
        numMoved);
  elementData[--size] = null; // Let gc do its work
 }

 // 清空集合
 public void clear() {
  // 修改modCount
  modCount++;

  // Let gc do its work
  for (int i = 0; i < size; i++)
   elementData[i] = null;

  size = 0;
 }

 ...
}

从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
(01) 新建了一个ArrayList,名称为arrayList。
(02) 向arrayList中添加内容。
(03) 新建一个“线程a”,并在“线程a”中通过Iterator反复的读取arrayList的值。
(04) 新建一个“线程b”,在“线程b”中删除arrayList中的一个“节点A”。
(05) 这时,就会产生有趣的事件了。
在某一时刻,“线程a”创建了arrayList的Iterator。此时“节点A”仍然存在于arrayList中,创建arrayList时,expectedModCount = modCount(假设它们此时的值为N)。
在“线程a”在遍历arrayList过程中的某一时刻,“线程b”执行了,并且“线程b”删除了arrayList中的“节点A”。“线程b”执行remove()进行删除操作时,在remove()中执行了“modCount++”,此时modCount变成了N+1!
“线程a”接着遍历,当它执行到next()函数时,调用checkForComodification()比较“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,这样,便抛出ConcurrentModificationException异常,产生fail-fast事件。
至此,我们就完全了解了fail-fast是如何产生的!
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。

5. 解决fail-fast的原理
上面,说明了“解决fail-fast机制的办法”,也知道了“fail-fast产生的根本原因”。接下来,我们再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。
还是以和ArrayList对应的CopyOnWriteArrayList进行说明。我们先看看CopyOnWriteArrayList的源码:

package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import sun.misc.Unsafe;

public class CopyOnWriteArrayList<E>
 implements List<E>, RandomAccess, Cloneable, java.io.Serializable {

 ...

 // 返回集合对应的迭代器
 public Iterator<E> iterator() {
  return new集合类中的fast-fail实现方式都差不多,我们以最简单的ArrayList为例吧。protected transient int modCount = 0;记录的是我们对ArrayList修改的次数,比如我们调用 add(),remove()等改变数据的操作时,会将modCount++。protected transient int modCount = 0;记录的是我们对ArrayList修改的次数,比如我们调用 add(),remove()等改变数据的操作时,会将modCount++。 COWIterator<E>(getArray(), 0);
 }

 ...

 private static class COWIterator<E> implements ListIterator<E> {
  private final Object[] snapshot;

  private int cursor;

  private COWIterator(Object[] elements, int initialCursor) {
   cursor = initialCursor;
   // 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。
   // 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。
   snapshot = elements;
  }

  public boolean hasNext() {
   return cursor < snapshot.length;
  }

  public boolean hasPrevious() {
   return cursor > 0;
  }

  public E next() {
   if (! hasNext())
    throw new NoSuchElementException();
   return (E) snapshot[cursor++];
  }

  public E previous() {
   if (! hasPrevious())
    throw new NoSuchElementException();
   return (E) snapshot[--cursor];
  }

  public int nextIndex() {
   return cursor;
  }

  public int previousIndex() {
   return cursor-1;
  }

  public void remove() {
   throw new UnsupportedOperationException();
  }

  public void set(E e) {
   throw new UnsupportedOperationException();
  }

  public void add(E e) {
   throw new UnsupportedOperationException();
  }
 }

 ...

}

从中,我们可以看出:
(01) 和ArrayList继承于AbstractList不同,CopyOnWriteArrayList没有继承于AbstractList,它仅仅只是实现了List接口。
(02) ArrayList的iterator()函数返回的Iterator是在AbstractList中实现的;而CopyOnWriteArrayList是自己实现Iterator。
(03) ArrayList的Iterator实现类中调用next()时,会“调用checkForComodification()比较‘expectedModCount'和‘modCount'的大小”;但是,CopyOnWriteArrayList的Iterator实现类中,没有所谓的checkForComodification(),更不会抛出ConcurrentModificationException异常!

6. 总结
由于HashMap(ArrayList)并不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map(这里的修改是指结构上的修改,并非指单纯修改集合内容的元素),那么将要抛出ConcurrentModificationException 即为fail-fast策略   
主要通过modCount域来实现,保证线程之间的可见性,modCount即为修改次数,对于HashMap(ArrayList)内容的修改就会增加这个值, 那么在迭代器的初始化过程中就会将这个值赋值给迭代器的expectedModCount
但是fail-fast行为并不能保证,因此依赖于此异常的程序的做法是错误的

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索java
, arraylist
fail-fast
fail fast机制、fastjson arraylist、fastarraylist、fail fast、java fail fast,以便于您获取更多的相关知识。

时间: 2024-10-12 06:16:27

由ArrayList来深入理解Java中的fail-fast机制_java的相关文章

深入理解java中for和foreach循环_java

•for循环中的循环条件中的变量只求一次值!具体看最后的图片 •foreach语句是java5新增,在遍历数组.集合的时候,foreach拥有不错的性能. •foreach是for语句的简化,但是foreach并不能替代for循环.可以这么说,任何foreach都能改写为for循环,但是反之则行不通. •foreach不是java中的关键字.foreach的循环对象一般是一个集合,List.ArrayList.LinkedList.Vector.数组等. •foreach的格式: for(元素类

详解java中动态代理实现机制_java

代理模式是常用的java设计模式,它的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事后处理消息等.代理类与委托类之间通常会存在关联关系,一个代理类的对象与一个委托类的对象关联,代理类的对象本身并不真正实现服务,而是通过调用委托类的对象的相关方法,来提供特定的服务. JAVA各种动态代理实现的比较 接口 interface AddInterface{ int add(int a, int b); } interface SubInterfa

理解Java中的静态绑定和动态绑定_java

一个Java程序的执行要经过编译和执行(解释)这两个步骤,同时Java又是面向对象的编程语言.当子类和父类存在同一个方法,子类重写了父类的方法,程序在运行时调用方法是调用父类的方法还是子类的重写方法呢,这应该是我们在初学Java时遇到的问题.这里首先我们将确定这种调用何种方法实现或者变量的操作叫做绑定. 在Java中存在两种绑定方式,一种为静态绑定,又称作早期绑定.另一种就是动态绑定,亦称为后期绑定. 程序绑定的概念: 绑定指的是一个方法的调用与方法所在的类(方法主体)关联起来.对java来说,

如何理解java中的空实现

问题描述 如何理解java中的空实现 新建一个类实现某接口,然后这个类的构造方法重写接口的某个方法,这个方法没有方法体 也就是重写其抽象方法,那么这样是不是控实现呢 解决方案 没有空实现这个概念,只有抽象类中的抽象函数,和接口中的函数定义,它们只有函数定义. 有的时候,对于void类型的函数,我们只打上括号,没有任何代码,这通常被称为空实现,或者桩函数. 解决方案二: java 中的空指针,不为空,的理解CallBack 的理解和java实现对java 接口和实现的理解 解决方案三: java高

如何理解java中 对象.this方法 还有 类.this.方法的 意义

问题描述 如何理解java中 对象.this方法 还有 类.this.方法的 意义 如何理解java中 对象.this方法 还有 类.this.方法的 意义 有没有这两种语法规则呢 解决方案 this.方法是在某个对象的实例方法内,this代表当前实例.一般情况下不用写,除非它和参数重名才需要: class A { int a; int b; public void seta(int a) { this.a = a; //因为参数a和成员变量a都叫a,所以需要区分. b = a; //相当于th

如何理解java中的某些方法不是线程安全的(不能同步访问)。

问题描述 如何理解java中的某些方法不是线程安全的(不能同步访问). 如何理解java中的某些方法不是线程安全的(不能同步访问). 能同步访问的方法有哪些,如何判断一个方法能不能同步访问 解决方案 不是线程安全的(不能同步访问) 你说反了.不是线程安全的才需要同步访问.同步访问的意思就是串行执行,等前面执行完了,再执行后面的. 线程不安全的场合很多,比如像操作系统中的用户界面.打印机等外设.控制台输出,都不允许并发(设想两个程序同时要输出文字到同一个屏幕,那还不乱套了) 在代码中,每个线程有自

深入理解java中i++和++i的区别_java

今天简单谈谈关于java的一个误区,相信很多刚开始学习java的朋友都会遇到这个问题,虽然问题很简单,但是经常容易搞混,说说java的i++和++i的区别. 先看一下代码: <span style="font-size:18px;">public class test { public static void main(String[] args) { int i = 0; for (int j = 0; j < 10; j++) { i=i++; } System.

java编程思想-如何更好的理解java中的面向对象

问题描述 如何更好的理解java中的面向对象 现在学到java的面向对象,有时候会把很多知识点弄混乱,怎么样才能把面向对象的知识点梳理好啊 解决方案 万物皆对象!!!你可以这样理解,面向对象的思想主要是让我们程序员更好的理解编程,因为和机器交流语法比较难懂,所有为了让编程更简单人们就提出了面向对象的思想.就是我们将任何一个东西都可以想象成一个有血有肉的.比如一本书.我们可以知道书可以有书名,可以页数,可以有类容等等这就是我们所说的属性,书可能还有翻页等这些动作这就相当于方法(有些语言叫做函数)了

理解java中的深复制和浅复制_java

 Java语言的一个优点就是取消了指针的概念,但也导致了许多程序员在编程中常常忽略了对象与引用的区别,本文会试图澄清这一概念.并且由于Java不能通过简单的赋值来解决对象复制的问题,在开发过程中,也常常要要应用clone()方法来复制对象.本文会让你了解什么是影子clone与深度clone,认识它们的区别.优点及缺点.       看到这个标题,是不是有点困惑:Java语言明确说明取消了指针,因为指针往往是在带来方便的同时也是导致代码不安全的根源,同时也会使程序的变得非常复杂难以理解,滥用指针写