网络协议系列之十一:互联网协议入门(一)

前言

我们每天使用互联网,你是否想过,它是如何实现的?
全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?
互联网的核心是一系列协议,总称为”互联网协议”(Internet Protocol Suite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。
下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。

互联网协议入门

作者:阮一峰

一、概述

1.1 五层模型

互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。
用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。
如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。

如上图所示,最底下的一层叫做”实体层”(Physical Layer),最上面的一层叫做”应用层”(Application Layer),中间的三层(自下而上)分别是”链接层”(Link Layer)、”网络层”(Network Layer)和”传输层”(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。
它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。

1.2 层与协议

每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。
大家都遵守的规则,就叫做”协议”(protocol)。
互联网的每一层,都定义了很多协议。这些协议的总称,就叫做”互联网协议”(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

二、实体层

我们从最底下的一层开始。

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

这就叫做”实体层”,它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

三、链接层

3.1 定义

单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?
这就是”链接层”的功能,它在”实体层”的上方,确定了0和1的分组方式。

3.2 以太网协议

早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做”以太网”(Ethernet)的协议,占据了主导地位。
以太网规定,一组电信号构成一个数据包,叫做”帧”(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

“标头”包含数据包的一些说明项,比如发送者、接受者、数据类型等等;”数据”则是数据包的具体内容。
“标头”的长度,固定为18字节。”数据”的长度,最短为46字节,最长为1500字节。因此,整个”帧”最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

3.3 MAC地址

上面提到,以太网数据包的”标头”,包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?
以太网规定,连入网络的所有设备,都必须具有”网卡”接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

3.4 广播

定义地址只是第一步,后面还有更多的步骤。

首先,一块网卡怎么会知道另一块网卡的MAC地址?

回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。

其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?

回答是以太网采用了一种很”原始”的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的”标头”,找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做”广播”(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,”链接层”就可以在多台计算机之间传送数据了。

四、网络层

4.1 网络层的由来

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一”包”,不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用”路由”方式发送。(”路由”的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了”网络层”的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做”网络地址”,简称”网址”。

于是,”网络层”出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

4.2 IP协议

规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数”子网掩码”(subnet mask)。

所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

4.3 IP数据包

根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的”数据”部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为”标头”和”数据”两个部分。

“标头”部分主要包括版本、长度、IP地址等信息,”数据”部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

IP数据包的”标头”部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。

因此,理论上,一个IP数据包的”数据”部分,最长为65,515字节。前面说过,以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

4.4 ARP协议

关于”网络层”,还有最后一点需要说明。

因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的”网关”(gateway),让网关去处理。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个”广播”地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了

五、传输层

5.1 传输层的由来

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做”端口”(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

“端口”是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

“传输层”的功能,就是建立”端口到端口”的通信。相比之下,”网络层”的功能是建立”主机到主机”的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做”套接字”(socket)。有了它,就可以进行网络应用程序开发了。

5.2 UDP协议

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由”标头”和”数据”两部分组成。

“标头”部分主要定义了发出端口和接收端口,”数据”部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的”数据”部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

UDP数据包非常简单,”标头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

5.3 TCP协议

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的”数据”部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

六、应用层

应用程序收到”传输层”的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。

“应用层”的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。

这是最高的一层,直接面对用户。它的数据就放在TCP数据包的”数据”部分。因此,现在的以太网的数据包就变成下面这样。

至此,整个互联网的五层结构,自下而上全部讲完了。这是从系统的角度,解释互联网是如何构成的。下一篇,我反过来,从用户的角度,自上而下看看这个结构是如何发挥作用,完成一次网络数据交换的。

原文地址http://www.ruanyifeng.com/blog/2012/05/internet_protocol_suite_part_i.html

时间: 2024-10-27 22:04:26

网络协议系列之十一:互联网协议入门(一)的相关文章

协议系列之TCP/IP协议

根据前面介绍的几种协议,将IP协议.TCP协议.UDP协议组合起来,于是便有了TCP/IP协议.现在很多的应用的通信都是建立在TCP/IP协议的基础上,运用非常广泛,很有必要对其学习一下. 打个不太恰当的比方,TCP/IP协议可以看成是邮局与邮递员的关系(实际TCP/IP协议族会包含四层,应用层.传输层.网络层.链路层).这个协议族中的IP协议定位到哪台计算机,而具体到这台计算机的哪个端口(应用程序)就需要TCP协议,一个属于网络层,一个属于传输层,互相依赖,提供有效的解决通信问题的措施.这就好

互联网协议入门(一)

我们每天使用互联网,你是否想过,它是如何实现的? 全世界几十亿台电脑,连接在一起,两两通信.上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗? 互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite).它们对电脑如何连接和组网,做出了详尽的规定.理解了这些协议,就理解了互联网的原理. 下面就是我的学习笔记.因为这些协议实在太复杂.太庞大,我想整理一个简洁的框架,帮助自己从总体

互联网协议入门(二)

上一篇文章分析了互联网的总体构思,从下至上,每一层协议的设计思想. 这是从设计者的角度看问题,今天我想切换到用户的角度,看看用户是如何从上至下,与这些协议互动的. ============================================================== 互联网协议入门(二) 作者:阮一峰 (接上文) 七.一个小结 先对前面的内容,做一个小结. 我们已经知道,网络通信就是交换数据包.电脑A向电脑B发送一个数据包,后者收到了,回复一个数据包,从而实现两台电脑之间的

互联网协议入门及DNS原理入门

互联网协议入门及DNS原理入门 互联网协议入门 作者: 阮一峰 日期: 2012年5月31日 我们每天使用互联网,你是否想过,它是如何实现的? 全世界几十亿台电脑,连接在一起,两两通信.上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗? 互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite).它们对电脑如何连接和组网,做出了详尽的规定.理解了这些协议,就理解了互联网的原理.

网络协议系列之十二:互联网协议入门(二)

(接上文) 七.一个小结 先对前面的内容,做一个小结. 我们已经知道,网络通信就是交换数据包.电脑A向电脑B发送一个数据包,后者收到了,回复一个数据包,从而实现两台电脑之间的通信.数据包的结构,基本上是下面这样: 发送这个包,需要知道两个地址: * 对方的MAC地址 * 对方的IP地址 有了这两个地址,数据包才能准确送到接收者手中.但是,前面说过,MAC地址有局限性,如果两台电脑不在同一个子网络,就无法知道对方的MAC地址,必须通过网关(gateway)转发. 上图中,1号电脑要向4号电脑发送一

互联网协议入门详解介绍

一.概述 1.1 五层模型 互联网的实现,分成好几层.每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持. 用户接触到的,只是最上面的一层,根本没有感觉到下面的层.要理解互联网,必须从最下层开始,自下而上理解每一层的功能. 如何分层有不同的模型,有的模型分七层,有的分四层.我觉得,把互联网分成五层,比较容易解释. 如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三

网络协议系列之四:IGMP、ICMP和ARP

前言 IGMP协议是一个组管理协议,它帮助多播路由器创建以及更新与每一个路由接口相连的忠实成员列表(就是与该路由接口连接频率较高).ICMP协议实际上就是差错控制协议,弥补了IP协议没有差错纠正机制以及差错报告的缺憾.ARP是一个地址映射协议,可以把一个IP地址映射为MAC地址. IGMP协议 1.IGMP是管理组成员关系的协议 2.IGMP报文分为成员关系报告报文和成员关系查询报文.成员关系查询报文是为了查找网络中活跃的组成员而发送的报文,而成员关系报告报文是为了记录响应者在网络中的成员关系而

网络协议系列之五:TCP简介

这里只是对TCP协议做个简要的介绍. TCP协议是基于流的可靠的传输层协议,不同于UDP协议,UDP不保证信息传输的可靠性.这就意味着应用程序把数据流交付给TCP后,要依靠TCP保证数据流完整.一致以及按序到达接收方的应用程序上.TCP主要通过差错控制机制保证可靠性的传输. 1.差错控制机制包括校验和.确认.超时重传这三个工具.校验和主要用来检验数据报文是否受到损伤.如果校验和无效,报文就会在终点被丢弃.确认是接收端用来证实确实收到了报文,在TCP中,使用的是累计确认,接收端会告诉发送端其下一个

《数据中心虚拟化技术权威指南》一第2章 数据中心网络演进2.1 以太网协议:过去和现在

第2章 数据中心网络演进 数据中心虚拟化技术权威指南 本章节将讲述以太网协议的发展,设计数据中心以太网络的时候需要考虑的最重要因素,以及虚拟化如何在这些项目实施中克服常见的局限性.本章包含以下几个主题. 以太网协议的过去与现在: 数据中心网络拓扑: 网络虚拟化优势. 数据中心网络的主要目标是将服务器数据传输至客户端和其他服务器.很明显,数据中心是为提供数据服务而建设的,网络可以精确地定义设备的真实效率. 为了与今天数据中心环境的可靠性和成长性相配,数据库中心网络必须包含以下特征. 可用性:能够健