python的自省基础

首先通过一个例子来看一下本文中可能用到的对象和相关概念。


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#coding: UTF-8

import sys 
模块,sys指向这个模块对象

import inspect

def foo(): pass #
函数,foo指向这个函数对象

 

class Cat(object): #
类,Cat指向这个类对象

    def __init__(self,
name
='kitty'):

        self.name = name

    def sayHi(self): 
实例方法,sayHi指向这个方法对象,使用类或实例.sayHi访问

        print self.name, 'says
Hi!'
 # 访问名为name的字段,使用实例.name访问

 

cat = Cat() #
cat是Cat类的实例对象

 

print Cat.sayHi #
使用类名访问实例方法时,方法是未绑定的(unbound)

print cat.sayHi #
使用实例访问实例方法时,方法是绑定的(bound)

有时候我们会碰到这样的需求,需要执行对象的某个方法,或是需要对对象的某个字段赋值,而方法名或是字段名在编码代码时并不能确定,需要通过参数传递字符串的形式输入。举个具体的例子:当我们需要实现一个通用的DBM框架时,可能需要对数据对象的字段赋值,但我们无法预知用到这个框架的数据对象都有些什么字段,换言之,我们在写框架的时候需要通过某种机制访问未知的属性。

这个机制被称为反射(反过来让对象告诉我们他是什么),或是自省(让对象自己告诉我们他是什么,好吧我承认括号里是我瞎掰的- -#),用于实现在运行时获取未知对象的信息。反射是个很吓唬人的名词,听起来高深莫测,在一般的编程语言里反射相对其他概念来说稍显复杂,一般来说都是作为高级主题来讲;但在Python中反射非常简单,用起来几乎感觉不到与其他的代码有区别,使用反射获取到的函数和方法可以像平常一样加上括号直接调用,获取到类后可以直接构造实例;不过获取到的字段不能直接赋值,因为拿到的其实是另一个指向同一个地方的引用,赋值只能改变当前的这个引用而已。

1. 访问对象的属性

以下列出了几个内建方法,可以用来检查或是访问对象的属性。这些方法可以用于任意对象而不仅仅是例子中的Cat实例对象;Python中一切都是对象。


1

2

3

4

5

6

7

8

9

10

11

cat = Cat('kitty')

 

print cat.name #
访问实例属性

cat.sayHi() #
调用实例方法

 

print dir(cat) #
获取实例的属性名,以列表形式返回

if hasattr(cat, 'name'): #
检查实例是否有这个属性

    setattr(cat, 'name''tiger'#
same as: a.name = 'tiger'

print getattr(cat, 'name'#
same as: print a.name

 

getattr(cat, 'sayHi')() #
same as: cat.sayHi()

  • dir([obj]): 
    调用这个方法将返回包含obj大多数属性名的列表(会有一些特殊的属性不包含在内)。obj的默认值是当前的模块对象。
  • hasattr(obj, attr): 
    这个方法用于检查obj是否有一个名为attr的值的属性,返回一个布尔值。
  • getattr(obj, attr): 
    调用这个方法将返回obj中名为attr值的属性的值,例如如果attr为'bar',则返回obj.bar。
  • setattr(obj, attr, val): 
    调用这个方法将给obj的名为attr的值的属性赋值为val。例如如果attr为'bar',则相当于obj.bar = val。

2. 访问对象的元数据

当你对一个你构造的对象使用dir()时,可能会发现列表中的很多属性并不是你定义的。这些属性一般保存了对象的元数据,比如类的__name__属性保存了类名。大部分这些属性都可以修改,不过改动它们意义并不是很大;修改其中某些属性如function.func_code还可能导致很难发现的问题,所以改改name什么的就好了,其他的属性不要在不了解后果的情况下修改。

接下来列出特定对象的一些特殊属性。另外,Python的文档中有提到部分属性不一定会一直提供,下文中将以红色的星号*标记,使用前你可以先打开解释器确认一下。

2.0. 准备工作:确定对象的类型

在types模块中定义了全部的Python内置类型,结合内置方法isinstance()就可以确定对象的具体类型了。

  • isinstance(object, classinfo): 
    检查object是不是classinfo中列举出的类型,返回布尔值。classinfo可以是一个具体的类型,也可以是多个类型的元组或列表。

types模块中仅仅定义了类型,而inspect模块中封装了很多检查类型的方法,比直接使用types模块更为轻松,所以这里不给出关于types的更多介绍,如有需要可以直接查看types模块的文档说明。本文第3节中介绍了inspect模块。

2.1. 模块(module)

  • __doc__: 文档字符串。如果模块没有文档,这个值是None。
  • *__name__: 始终是定义时的模块名;即使你使用import .. as 为它取了别名,或是赋值给了另一个变量名。
  • *__dict__: 包含了模块里可用的属性名-属性的字典;也就是可以使用模块名.属性名访问的对象。
  • __file__: 包含了该模块的文件路径。需要注意的是内建的模块没有这个属性,访问它会抛出异常!

1

2

3

4

5

import fnmatch
as m

print m.__doc__.splitlines()[0#
Filename matching with shell patterns.

print m.__name__                #
fnmatch

print m.__file__                #
/usr/lib/python2.6/fnmatch.pyc

print m.__dict__.items()[0]     #
('fnmatchcase', <function>)</function>

2.2. 类(class)

  • __doc__: 文档字符串。如果类没有文档,这个值是None。
  • *__name__: 始终是定义时的类名。
  • *__dict__: 包含了类里可用的属性名-属性的字典;也就是可以使用类名.属性名访问的对象。
  • __module__: 包含该类的定义的模块名;需要注意,是字符串形式的模块名而不是模块对象。
  • *__bases__: 直接父类对象的元组;但不包含继承树更上层的其他类,比如父类的父类。

1

2

3

4

5

print Cat.__doc__           #
None

print Cat.__name__          #
Cat

print Cat.__module__        #
__main__

print Cat.__bases__         #
(<type>,)

print Cat.__dict__          #
{'__module__': '__main__', ...}</type>

2.3. 实例(instance)

实例是指类实例化以后的对象。

  • *__dict__: 包含了可用的属性名-属性字典。
  • *__class__: 该实例的类对象。对于类Cat,cat.__class__ == Cat 为 True。

1

2

3

print cat.__dict__

print cat.__class__

print cat.__class__ == Cat #
True

2.4. 内建函数和方法(built-in functions and methods)

根据定义,内建的(built-in)模块是指使用C写的模块,可以通过sys模块的builtin_module_names字段查看都有哪些模块是内建的。这些模块中的函数和方法可以使用的属性比较少,不过一般也不需要在代码中查看它们的信息。

  • __doc__: 函数或方法的文档。
  • __name__: 函数或方法定义时的名字。
  • __self__: 仅方法可用,如果是绑定的(bound),则指向调用该方法的类(如果是类方法)或实例(如果是实例方法),否则为None。
  • *__module__: 函数或方法所在的模块名。

2.5. 函数(function)

这里特指非内建的函数。注意,在类中使用def定义的是方法,方法与函数虽然有相似的行为,但它们是不同的概念。

  • __doc__: 函数的文档;另外也可以用属性名func_doc。
  • __name__: 函数定义时的函数名;另外也可以用属性名func_name。
  • *__module__: 包含该函数定义的模块名;同样注意,是模块名而不是模块对象。
  • *__dict__: 函数的可用属性;另外也可以用属性名func_dict。 
    不要忘了函数也是对象,可以使用函数.属性名访问属性(赋值时如果属性不存在将新增一个),或使用内置函数has/get/setattr()访问。不过,在函数中保存属性的意义并不大。
  • func_defaults: 这个属性保存了函数的参数默认值元组;因为默认值总是靠后的参数才有,所以不使用字典的形式也是可以与参数对应上的。
  • func_code: 这个属性指向一个该函数对应的code对象,code对象中定义了其他的一些特殊属性,将在下文中另外介绍。
  • func_globals: 这个属性指向定义函数时的全局命名空间。
  • *func_closure: 这个属性仅当函数是一个闭包时有效,指向一个保存了所引用到的外部函数的变量cell的元组,如果该函数不是一个内部函数,则始终为None。这个属性也是只读的。

下面的代码演示了func_closure:


1

2

3

4

5

6

7

8

9

10

11

12

#coding: UTF-8

def foo():

    = 1

    def bar():

        print #
引用非全局的外部变量n,构造一个闭包

    = 2

    return bar

 

closure = foo()

print closure.func_closure

# 使用dir()得知cell对象有一个cell_contents属性可以获得值

print closure.func_closure[0].cell_contents #
2

由这个例子可以看到,遇到未知的对象使用dir()是一个很好的主意 :)

2.6. 方法(method)

方法虽然不是函数,但可以理解为在函数外面加了一层外壳;拿到方法里实际的函数以后,就可以使用2.5节的属性了。

  • __doc__: 与函数相同。
  • __name__: 与函数相同。
  • *__module__: 与函数相同。
  • im_func: 使用这个属性可以拿到方法里实际的函数对象的引用。另外如果是2.6以上的版本,还可以使用属性名__func__。
  • im_self: 如果是绑定的(bound),则指向调用该方法的类(如果是类方法)或实例(如果是实例方法),否则为None。如果是2.6以上的版本,还可以使用属性名__self__。
  • im_class: 实际调用该方法的类,或实际调用该方法的实例的类。注意不是方法的定义所在的类,如果有继承关系的话。

1

2

3

4

im = cat.sayHi

print im.im_func

print im.im_self #
cat

print im.im_class #
Cat

这里讨论的是一般的实例方法,另外还有两种特殊的方法分别是类方法(classmethod)和静态方法(staticmethod)。类方法还是方法,不过因为需要使用类名调用,所以他始终是绑定的;而静态方法可以看成是在类的命名空间里的函数(需要使用类名调用的函数),它只能使用函数的属性,不能使用方法的属性。

2.7. 生成器(generator)

生成器是调用一个生成器函数(generator function)返回的对象,多用于集合对象的迭代。

  • __iter__: 仅仅是一个可迭代的标记。
  • gi_code: 生成器对应的code对象。
  • gi_frame: 生成器对应的frame对象。
  • gi_running: 生成器函数是否在执行。生成器函数在yield以后、执行yield的下一行代码前处于frozen状态,此时这个属性的值为0。
  • next|close|send|throw: 这是几个可调用的方法,并不包含元数据信息,如何使用可以查看生成器的相关文档。

1

2

3

4

5

6

7

8

9

10

11

12

def gen():

    for in xrange(5):

        yield n

= gen()

print g             #
<generator object gen at 0x...>

print g.gi_code     #
<code object gen at 0x...>

print g.gi_frame    #
<frame object at 0x...>

print g.gi_running  #
0

print g.next()      #
0

print g.next()      #
1

for in g:

    print n,        #
2 3 4

接下来讨论的是几个不常用到的内置对象类型。这些类型在正常的编码过程中应该很少接触,除非你正在自己实现一个解释器或开发环境之类。所以这里只列出一部分属性,如果需要一份完整的属性表或想进一步了解,可以查看文末列出的参考文档。

2.8. 代码块(code)

代码块可以由类源代码、函数源代码或是一个简单的语句代码编译得到。这里我们只考虑它指代一个函数时的情况;2.5节中我们曾提到可以使用函数的func_code属性获取到它。code的属性全部是只读的。

  • co_argcount: 普通参数的总数,不包括*参数和**参数。
  • co_names: 所有的参数名(包括*参数和**参数)和局部变量名的元组。
  • co_varnames: 所有的局部变量名的元组。
  • co_filename: 源代码所在的文件名。
  • co_flags:  这是一个数值,每一个二进制位都包含了特定信息。较关注的是0b100(0x4)和0b1000(0x8),如果co_flags & 0b100 != 0,说明使用了*args参数;如果co_flags & 0b1000 != 0,说明使用了**kwargs参数。另外,如果co_flags & 0b100000(0x20) != 0,则说明这是一个生成器函数(generator function)。

1

2

3

4

5

co = cat.sayHi.func_code

print co.co_argcount        #
1

print co.co_names           #
('name',)

print co.co_varnames        #
('self',)

print co.co_flags
0b100   #
0

2.9. 栈帧(frame)

栈帧表示程序运行时函数调用栈中的某一帧。函数没有属性可以获取它,因为它在函数调用时才会产生,而生成器则是由函数调用返回的,所以有属性指向栈帧。想要获得某个函数相关的栈帧,则必须在调用这个函数且这个函数尚未返回时获取。你可以使用sys模块的_getframe()函数、或inspect模块的currentframe()函数获取当前栈帧。这里列出来的属性全部是只读的。

  • f_back: 调用栈的前一帧。
  • f_code: 栈帧对应的code对象。
  • f_locals: 用在当前栈帧时与内建函数locals()相同,但你可以先获取其他帧然后使用这个属性获取那个帧的locals()。
  • f_globals: 用在当前栈帧时与内建函数globals()相同,但你可以先获取其他帧……。

1

2

3

4

5

6

def add(x,
y
=1):

    = inspect.currentframe()

    print f.f_locals    #
same as locals()

    print f.f_back      #
<frame object at 0x...>

    return x+y

add(2)

2.10. 追踪(traceback)

追踪是在出现异常时用于回溯的对象,与栈帧相反。由于异常时才会构建,而异常未捕获时会一直向外层栈帧抛出,所以需要使用try才能见到这个对象。你可以使用sys模块的exc_info()函数获得它,这个函数返回一个元组,元素分别是异常类型、异常对象、追踪。traceback的属性全部是只读的。

  • tb_next: 追踪的下一个追踪对象。
  • tb_frame: 当前追踪对应的栈帧。
  • tb_lineno: 当前追踪的行号。

1

2

3

4

5

6

7

8

def div(x,
y):

    try:

        return x/y

    except:

        tb = sys.exc_info()[2]  #
return (exc_type, exc_value, traceback)

        print tb

        print tb.tb_lineno      #
"return x/y" 的行号

div(10)

3. 使用inspect模块

inspect模块提供了一系列函数用于帮助使用自省。下面仅列出较常用的一些函数,想获得全部的函数资料可以查看inspect模块的文档。

3.1. 检查对象类型

  • is{module|class|function|method|builtin}(obj): 
    检查对象是否为模块、类、函数、方法、内建函数或方法。
  • isroutine(obj): 
    用于检查对象是否为函数、方法、内建函数或方法等等可调用类型。用这个方法会比多个is*()更方便,不过它的实现仍然是用了多个is*()。 

    1

    2

    3

    im = cat.sayHi

    if inspect.isroutine(im):

        im()

    对于实现了__call__的类实例,这个方法会返回False。如果目的是只要可以直接调用就需要是True的话,不妨使用isinstance(obj, collections.Callable)这种形式。我也不知道为什么Callable会在collections模块中,抱歉!我猜大概是因为collections模块中包含了很多其他的ABC(Abstract Base Class)的缘故吧:)

3.2. 获取对象信息

  • getmembers(object[, predicate]): 
    这个方法是dir()的扩展版,它会将dir()找到的名字对应的属性一并返回,形如[(name, value), ...]。另外,predicate是一个方法的引用,如果指定,则应当接受value作为参数并返回一个布尔值,如果为False,相应的属性将不会返回。使用is*作为第二个参数可以过滤出指定类型的属性。
  • getmodule(object): 
    还在为第2节中的__module__属性只返回字符串而遗憾吗?这个方法一定可以满足你,它返回object的定义所在的模块对象。
  • get{file|sourcefile}(object): 
    获取object的定义所在的模块的文件名|源代码文件名(如果没有则返回None)。用于内建的对象(内建模块、类、函数、方法)上时会抛出TypeError异常。
  • get{source|sourcelines}(object): 
    获取object的定义的源代码,以字符串|字符串列表返回。代码无法访问时会抛出IOError异常。只能用于module/class/function/method/code/frame/traceack对象。
  • getargspec(func): 
    仅用于方法,获取方法声明的参数,返回元组,分别是(普通参数名的列表, *参数名, **参数名, 默认值元组)。如果没有值,将是空列表和3个None。如果是2.6以上版本,将返回一个命名元组(Named Tuple),即除了索引外还可以使用属性名访问元组中的元素。  

    1

    2

    3

    4

    def add(x,
    y
    =1*z):

        return + + sum(z)

    print inspect.getargspec(add)

    #ArgSpec(args=['x', 'y'], varargs='z', keywords=None, defaults=(1,))

  • getargvalues(frame): 
    仅用于栈帧,获取栈帧中保存的该次函数调用的参数值,返回元组,分别是(普通参数名的列表, *参数名, **参数名, 帧的locals())。如果是2.6以上版本,将返回一个命名元组(Named Tuple),即除了索引外还可以使用属性名访问元组中的元素。 

    1

    2

    3

    4

    5

    def add(x,
    y
    =1*z):

        print inspect.getargvalues(inspect.currentframe())

        return + + sum(z)

    add(2)

    #ArgInfo(args=['x', 'y'], varargs='z', keywords=None, locals={'y':
    1, 'x': 2, 'z': ()})

  • getcallargs(func[, *args][, **kwds]): 
    返回使用args和kwds调用该方法时各参数对应的值的字典。这个方法仅在2.7版本中才有。
  • getmro(cls): 
    返回一个类型元组,查找类属性时按照这个元组中的顺序。如果是新式类,与cls.__mro__结果一样。但旧式类没有__mro__这个属性,直接使用这个属性会报异常,所以这个方法还是有它的价值的。 

    1

    2

    3

    4

    5

    6

    7

    8

    print inspect.getmro(Cat)

    #(<class '__main__.Cat'>, <type 'object'>)

    print Cat.__mro__

    #(<class '__main__.Cat'>, <type 'object'>)

    class Dog: pass

    print inspect.getmro(Dog)

    #(<class __main__.Dog at 0x...>,)

    print Dog.__mro__ #
    AttributeError

  • currentframe(): 
    返回当前的栈帧对象。

其他的操作frame和traceback的函数请查阅inspect模块的文档,用的比较少,这里就不多介绍了。

时间: 2024-10-31 15:18:32

python的自省基础的相关文章

熟悉Python的各种基础小算法

网上有一个Python100小例子的栏目,里面代码良莠不齐,于是下面就自己实现了其中的一些案例. 01.py # coding:utf-8 import sys reload(sys) sys.setdefaultencoding('utf8') # __author__ = '郭 璞' # __date__ = '2016/8/24' # __Desc__ = ''' 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 程序分析:可填在百位.十位.个位的数字都是

Python正则表达式之基础篇

正则表达式是用于处理字符串的强大工具,它并不是Python的一部分. 其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同. 它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的. 下图展示了使用正则表达式进行匹配的流程: 1.1介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了

python框架django基础指南_python

Django简介: Django是一个开放源代码的Web应用框架,由Python写成.采用了MVC的框架模式,即模型M,视图V和控制器C.不过在Django实际使用中,Django更关注的是模型(Model).模板(Template)和视图(Views),称为 MTV模式.Django的主要目的是简便.快速的开发数据库驱动的网站,它强调代码复用,多个组件可以很方便的以"插件"形式服务于整个框架,Django有许多功能强大的第三方插件. django是对象关系映射的 (ORM,objec

Python正则表达式之基础篇_正则表达式

正则表达式是用于处理字符串的强大工具,它并不是Python的一部分. 其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同. 它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的. 下图展示了使用正则表达式进行匹配的流程: 1.1介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了

python异常处理(基础)

之前在学习python的时候有整理过python异常处理的文章,不够简单也不够完整,所以决定再整理一篇,算做补充. http://www.cnblogs.com/fnng/archive/2013/04/28/3048356.html   python shell >>> open('abc.txt','r') Traceback (most recent call last): File "<stdin>", line 1, in <module&

Windows下用PyCharm和Visual Studio开始Python编程_基础知识

Windows搭建python开发环境 首先需要去python的官网下载环境.鼠标移动到Downloads的tab上,在这里可以下载. python的环境还是很人性化的,没有那么多罗里吧嗦的配置什么的,下载好以后直接无脑next就行了,直到finish. Python IDE 优秀的Python IDE有很多,这里我就介绍几款相对我来说比较常用的!排名不分先后! pycharm VIM Eclipse with PyDev Sublime Text Komodo Edit PyScripter

python操作MongoDB基础知识_python

首先运行easy_install pymongo命令安装pymongo驱动.然后执行操作:创建连接 复制代码 代码如下: In [1]: import pymongoIn [2]: connection = pymongo.Connection('localhost', 27017) 切换到数据库malware 复制代码 代码如下: In [3]: db = connection.malware 获取collection 复制代码 代码如下:  In [4]: collection = db.m

Python 自省指南 如何监视您的 Python 对象

简介: 自省揭示了关于程序对象的有用信息.Python 是动态的面向对象的编程语言,提供了很棒的自省支持.本文展示了该语言的许多能力,从最基本形式的帮助到较为高级形式的调查. 什么是自省? 在日常生活中,自省(introspection)是一种自我检查行为.自省是指对某人自身思想.情绪.动机和行为的检查.伟大的哲学家苏格拉底将生命中的大部分时间用于自我检查,并鼓励他的雅典朋友们也这样做.他甚至对自己作出了这样的要求:"未经自省的生命不值得存在."(请参阅 参考资料以获取关于苏格拉底更多

[python] 专题九.Mysql数据库编程基础知识

        在Python网络爬虫中,通常是通过TXT纯文本方式存储,其实也是可以存储在数据库中的:同时在WAMP(Windows.Apache.MySQL.PHP或Python)开发网站中,也可以通过Python构建网页的,所以这篇文章主要讲述Python调用MySQL数据库相关编程知识.从以下几个方面进行讲解:         1.配置MySLQ         2.SQL语句基础知识         3.Python操作MySQL基础知识         4.Python调用MySQL