赣南师范学院数学竞赛培训第01套模拟试卷参考解答

 

1. 设 $f,g$ 是 $[a,b]$ 上的连续函数.

(1) 对 $1<p<q<\infty$, $\cfrac{1}{p}+\cfrac{1}{q}=1, a,b>0$, 试证: $$\bex ab\leq \cfrac{1}{p}a^p+\cfrac{1}{q}b^q. \eex$$

(2) 设 $\dps{\vsm{n}a_n}$ 为收敛的正项级数, 试证: $\dps{\vsm{n}a_n^{1-\frac{1}{n}}}$ 也收敛.

(3) 对 $1\leq p\leq \infty$, 定义 $$\bex \sen{f}_p=\sedd{\ba{ll} \dps{\sex{\int_a^b |f(x)|^p\rd x}^\frac{1}{p}},&1\leq p<\infty,\\ \dps{\max_{a\leq x\leq b}|f(x)|},&p=\infty. \ea} \eex$$ 试证: 若 $1\leq p,q\leq \infty$ $\dps{\frac{1}{p}+\frac{1}{q}=1}$, $\sen{f}_p<\infty$, $\sen{g}_q<\infty$, 则 $$\bex \int_a^b |f(x)g(x)|\rd x\leq \sen{f}_p\sen{g}_{q}. \eex$$

(4) 对 $1\leq p\leq \infty$, $\sen{f}_p<\infty$, $\sen{g}_p<\infty$, 试证: $$\bex \sen{f+g}_p\leq \sen{f}_p+\sen{g}_p. \eex$$

(5) 再设 $h$ 在 $f$ 的值域 (是一个区间) 上二阶连续可导, 且 $h''\leq 0$, 则 $$\bex h\sex{\frac{1}{b-a}\int_a^b f(x)\rd x} \geq \frac{1}{b-a} \int_a^b h(f(x))\rd x. \eex$$

(6) 再设 $f$ 恒不为零, 对 $p\in\bbR$, 定义 $$\bex A_p(f)=\sex{\frac{1}{b-a}\int_a^b |f(x)|^p\rd x}^\frac{1}{p}. \eex$$ 试证: $$\beex \bea \lim_{p\to-\infty} A_p(f)&=\min_{a\leq x\leq b}|f(x)|,\\ \lim_{p\to 0} A_p(f)&=\exp\sez{\frac{1}{b-a} \int_a^b \ln |f(x)|\rd x},\\ \lim_{p\to+\infty} A_p(f)&=\max_{a\leq x\leq b}|f(x)|. \eea \eeex$$

(7) 试证: 存在 $\xi\in (a,b)$, 使得 $\dps{\int_a^b f(x)\rd x=f(\xi)(b-a)}$.

(8) 若再设 $f$ 非负严格递增, 则由 (7) 知对 $\forall\ p>0$, $$\bex \exists |\ x_p\in (a,b),\st f^p(x_p)=\frac{1}{b-a}\int_a^b f^p(x)\rd x. \eex$$ 试证: $\vlm{p}x_p$ 存在, 并求之.

 

证明: (1) $$\beex \bea &\quad ab\leq \frac{1}{p}a^p+\frac{1}{q}b^q=\frac{1}{p}a^p +\sex{1-\frac{1}{p}}b^\frac{p}{p-1}\\ &\lra \frac{a}{b^\frac{1}{p-1}}\leq \frac{1}{p}\sex{\frac{a}{b^\frac{1}{p-1}}}^p+1-\frac{1}{p}\\ &\lra x\leq \frac{1}{p}x^p+1-\frac{1}{p}\\ &\lra x-1\leq \frac{1}{p}(x^p-1)\\ &\la \frac{x-1}{\frac{1}{p}(x^p-1)}=\frac{1}{\xi^{p-1}}\sedd{ \ba{ll} >1,&0\leq x<1,\ x<\xi<1,\\ <1,&1<x<\infty,\ 1<\xi<x. \ea} \eea \eeex$$ 也可另证明如下: 设 $$\bex f(x)=\frac{1}{p}x^p-x+1-\frac{1}{p}, \eex$$ 则 $f(1)=0$, $$\bex f'(x)=x^{p-1}-1\sedd{\ba{ll} <0,&0<x<1,\\ >0,&x>1. \ea} \eex$$ 而 $f(x)\geq f(1)=0,\ x\in [0,\infty)$.

 

(2) 由 (1) 知 $$\beex \bea \vsm{n}a_n^{1-\frac{1}{n}} &=2\vsm{n}a_n^{1-\frac{1}{n}}\cdot \frac{1}{2}\\ &\leq 2\vsm{n} \sex{\frac{n-1}{n}a_n+\frac{1}{n}\frac{1}{2^n}}\\ &<\infty. \eea \eeex$$

 

(3) 不妨设 $\sen{f}_p\neq 0$, $\sen{g}_q\neq 0$, $p\neq 1$, $q\neq \infty$, 而有 $$\beex \bea \int_a^b \sev{\frac{f(x)}{\sen{f}_p}\cdot \frac{g(x)}{\sen{g}_q}}\rd x \leq \int_a^b \sez{\frac{1}{p}\sex{\frac{f(x)}{\sen{f}_p}}^p +\frac{1}{q}\sex{\frac{g(x)}{\sen{g}_q}}^q}\rd x =\frac{1}{p}+\frac{1}{q}=1. \eea \eeex$$

(4) 不妨设 $p\neq 1$, $p\neq \infty$, 而有 $$\beex \bea \sen{f+g}_p^p &=\int_a^b |f(x)+g(x)|^p\rd x\\ &\leq \int_a^b |f(x)+g(x)|\cdot |f(x)+g(x)|^{p-1}\rd x\\ &\leq \int_a^b (|f(x)|+|g(x)|) \cdot |f(x)+g(x)|^{p-1}\rd x\\ &\leq \int_a^b |f(x)| \cdot |f(x)+g(x)|^{p-1}\rd x +\int_a^b |g(x)| \cdot |f(x)+g(x)|^{p-1}\rd x\\ &\leq \sex{\int_a^b |f(x)|^p\rd x}^\frac{1}{p} \cdot \sex{\int_a^b |f(x)+g(x)|^{(p-1)\cdot \frac{p}{p-1}}\rd x}^\frac{p-1}{p}\\ &\quad+\sex{\int_a^b |g(x)|^p\rd x}^\frac{1}{p} \cdot \sex{\int_a^b |f(x)+g(x)|^{(p-1)\cdot \frac{p}{p-1}}\rd x}^\frac{p-1}{p}\\ &=\sen{f}_p\cdot \sen{f+g}_p^{p-1}+ \sen{g}_p\cdot\sen{f+g}_p^{p-1}. \eea \eeex$$

(5) 设 $\dps{A=\frac{1}{b-a}\int_a^b f(x)\rd x}$, 则由 $h''\leq 0$ 知 $$\beex \bea &\quad h(y)\leq h(A)+h'(A)(y-A)\\ &\ra h(f(x))\leq h(A)+h'(A)(f(x)-A)\\ &\ra \frac{1}{b-a}\int_a^b h(f(x))\rd x\leq h(A). \eea \eeex$$

(6) 先证 $\dps{\lim_{p\to+\infty} A_p(f)=\max_{a\leq x\leq b}|f(x)|}$. 显然有 $\dps{\limsup_{p\to+\infty} A_p(f)\leq \max_{a\leq x\leq b}|f(x)|}$, 往证 $$\bex \liminf_{p\to+\infty} A_p(f)\geq\max_{a\leq x\leq b}|f(x)|, \eex$$ 而有结论. 设 $$\bex \xi \in [a,b],\st |f(\xi)|=\max_{a\leq x\leq b}|f(x)|. \eex$$ 而由连续函数的保号性 (注意: $f(x)\neq 0,\ \forall\ x$), $$\bex \exists\ [a,b]\supset [c,d]\ni \xi,\st x\in [c,d]\ra |f(x)|>|f(x)|-\ve. \eex$$ 于是 $$\beex \bea A_p(f)&\geq \sex{\frac{1}{b-a}\int_c^d |f(x)|^p\rd x}^\frac{1}{p}\\ &\geq \sez{\frac{1}{b-a}\int_c^d (|f(\xi)|-\ve)^p\rd x}^\frac{1}{p}\\ &=\sex{\frac{d-c}{b-a}}^\frac{1}{p}(|f(\xi)|-\ve),\\ \liminf_{p\to+\infty} A_p(f)&\geq |f(\xi)|-\ve. \eea \eeex$$ 再证 $\dps{\lim_{p\to-\infty} A_p(f)=\min_{a\leq x\leq b}|f(x)|}$ 如下: $$\beex \bea \lim_{p\to-\infty} A_p(f) &=\lim_{p\to-\infty} \sed{\frac{1}{b-a}\sez{\frac{1}{|f(x)|}}^{-p}\rd x}^{\frac{1}{-p}\cdot (-1)}\\ &=\lim_{q\to+\infty} \sed{\frac{1}{b-a}\sez{\frac{1}{|f(x)|}}^q\rd x}^{\frac{1}{q}\cdot(-1)}\\ &=\sez{\lim_{q\to+\infty} A_q\sex{\frac{1}{|f(x)|}}}^{-1}\\ &=\sez{\max_{a\leq x\leq b} \frac{1}{|f(x)|}}^{-1}\\ &=\min_{a\leq x\leq b}|f(x)|. \eea \eeex$$ 最后证明 $\dps{\lim_{p\to 0} A_p(f)=\exp\sez{\frac{1}{b-a} \int_a^b \ln |f(x)|\rd x}}$. 一方面, $$\beex \bea \ln A_p(f)&=\frac{1}{p}\ln\sez{\frac{1}{b-a}\int_a^b |f(x)|^p\rd x}\\ &\geq \frac{1}{p}\frac{1}{b-a}\int_a^b \ln |f(x)|^p\rd x\quad\sex{(\ln x)''<0,\ \mbox{由 }(5)}\\ &=\frac{1}{b-a}\int_a^b \ln |f(x)|\rd x. \eea \eeex$$ 另一方面, $$\beex \bea \ln A_p(f)&=\ln \sez{\frac{1}{b-a}\int_a^b |f(x)|^p\rd x}^\frac{1}{p}\\ &\leq \cfrac{ \dps{\frac{1}{b-a}\int_a^b |f(x)|^p\rd x-1} }{p}\\ &\quad\sex{ \ln x\leq x-1\ (x>0)\ra \ln x^p\leq x^p-1\ra \ln x\leq \frac{x^p-1}{p}\ (p>0) }\\ &=\frac{1}{b-a} \int_a^b \frac{|f(x)|^p-1}{p}\rd x,\\ \liminf_{p\to 0}A_p(f)&\leq \frac{1}{b-a} \int_a^b \lim_{p\to 0}\frac{|f(x)|^p-1}{p}\rd x =\frac{1}{b-a} \int_a^b \ln |f(x)|\rd x. \eea \eeex$$

(7) 设 $\dps{F(x)=\int_a^x f(t)\rd t}$, 则由 Lagrange 中值定理, $$\bex \exists\ \xi\in (a,b),\st f(\xi)=F'(\xi)=\frac{F(b)-F(a)}{b-a}=\frac{1}{b-a}\int_a^b f(t)\rd t. \eex$$

(8) 由 (1) 知 $$\beex \bea f^p(x_p)&=\cfrac{1}{b-a}\int_a^b f^p(t)\cdot 1\rd t\\ &\leq \cfrac{1}{b-a}\sex{ \int_a^b f^{p\cdot\frac{p+1}{p}}(t)\rd t }^\frac{p}{p+1} \sex{ \int_a^b 1^{p+1}\rd t }^{\frac{1}{p+1}}\\ &=\cfrac{1}{b-a} \sex{\int_a^b f^{p+1}(t)\rd t}^{\frac{p}{p+1}} (b-a)^{\frac{1}{p+1}}\\ &=\sex{\cfrac{1}{b-a}\int_a^b f^{p+1}(t)\rd t}^\frac{p}{p+1}\\ &=f^p(x_{p+1}). \eea \eeex$$ 又 $f$ 严格递增, 我们有 $x_p\leq x_{p+1}$. 如此, $x_p$ 递增有上界. 由单调有界定理, $\dps{\vlm{p}x_p=x_\infty}$ 存在. 另外, 由 (6) 知 $$\beex \bea f(x_p)&=\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}},\\ f(x_\infty)&=\vlm{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} =\max_{a\leq t\leq b}f(t)=f(b),\\ x_\infty&=b, \eea \eeex$$ 

时间: 2024-07-29 14:49:32

赣南师范学院数学竞赛培训第01套模拟试卷参考解答的相关文章

赣南师范学院数学竞赛培训第04套模拟试卷参考解答

1. 设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. (1) 试证: $$\bex 4|f(x)|\leq \int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$ (2) 若再设 $f'(0)=1$, $f'(1)=0$, 试证: $$\bex 4\leq \int_0^1 |f''(x)|^2\rd x. \eex$$  证明: (1) 用 $

赣南师范学院数学竞赛培训第08套模拟试卷参考解答

1. 设 $A,B$ 为 $n$ 阶方阵, $\rank(A)<n$, 且 $A=B_1\cdots B_k$, 其中 $B_i^2=B_i$, $i=1,\cdots,k$. 试证: $$\bex \rank(E-A)\leq k\sez{n-\rank(A)}. \eex$$ 证明: $$\beex \bea \rank(E-A)&=\rank(E-B_1\cdots B_k)\\ &=\rank(E-B_1+B_1(E-B_2\cdots B_k))\\ &\leq \

赣南师范学院数学竞赛培训第07套模拟试卷参考解答

1. 设整数 $n\geq 2$, 并且 $a_1,a_2,\cdots,a_n$ 是互不相同的整数. 证明多项式 $$\bex f(x)=(x-a_1)(x-a_2)\cdots(x-a_n)+1 \eex$$ 在有理数域上不可约. 证明: 用反证法. 若 (任一非零有理系数多项式均可写成一个有理数与一个本原多项式的乘积) $$\bex f(x)=g(x)h(x),\quad g(x)\in\bbZ[x],\ h(x)\in \bbZ[x],\quad 1\leq \deg g(x),\ \d

赣南师范学院数学竞赛培训第02套模拟试卷参考解答

    1. 求 $\dps{\int_\vGa y^2\rd s}$, 其中 $\vGa$ 由 $\dps{\sedd{\ba{rl} x^2+y^2+z^2&=a^2\\ x+z&=a \ea}}$ 决定. 解答: $\vGa$: $$\bex \sedd{\ba{rl} \sex{x-\cfrac{a}{2}}^2+y^2+\sex{z-\cfrac{a}{2}}^2&=\cfrac{a^2}{2}\\ \sex{x-\cfrac{a}{2}}+\sex{y-\cfrac{a

赣南师范学院数学竞赛培训第06套模拟试卷参考解答

1. 设 $f(\al,\beta)$ 为线性空间 $V$ 上的非退化双线性函数, 试证: $$\bex \forall\ g\in V^*,\ \exists\ |\ \al\in V,\st f(\al,\beta)=g(\beta),\quad \forall\ \beta\in V. \eex$$ 证明: (1) 唯一性: 设 $\tilde\al$ 也适合题意, 则 $$\beex \bea &\quad f(\al,\beta)=f(\tilde\al,\beta),\quad \f

赣南师范学院数学竞赛培训第03套模拟试卷参考解答

1. 计算下列定积分: (1) $\dps{\int_{-\pi}^\pi \frac{x\sin x \arctan e^x}{1+\cos^2x}\rd x}$; (2) $\dps{\int_{\frac{1}{2}}^2 \sex{1+x-\frac{1}{x}}e^{x+\frac{1}{x}}\rd x}$. 解答: $$\beex \bea &\quad\int_{-\pi}^\pi \frac{x\sin x \arctan e^x}{1+\cos^2x}\rd x =\int_

赣南师范学院数学竞赛培训第09套模拟试卷参考解答

1. 对定义域为全体 $n$ 阶矩阵的函数 $f: \bbR^{n\times n}\to \bbR$, 如果 $\dps{\cfrac{\p f}{\p a_{ij}}}$ 对 $A$ 中每个元素 $a_{ij}$ 都存在, 则记 $$\bex \n_A f(A)=\sex{\cfrac{\p f}{\p a_{ij}}}. \eex$$ 试证: (1) $\n_A\tr (AB)=B^T$; (2) $\n_A \tr(ABA^TC)=CAB+C^TAB^T$. 证明: (1) $$\bee

赣南师范学院数学竞赛培训第10套模拟试卷参考解答

1. 设 $f,g$ 是某数域上的多项式, $m(x)$ 是它们的首一最小公倍式, 而 $\scrA$ 为该数域上某线性空间 $V$ 的一个线性变换. 试证: $$\bex \ker f(\scrA)+\ker g(\scrA)=\ker m(\scrA). \eex$$ 证明: 先证: $\ker f(\sigma)+\ker g(\sigma)\subset\ker m(\sigma).$ 由 $f|m$, $g|m$ 知 $\ker f(\sigma)\subset \ker m(\sig

[家里蹲大学数学杂志]第322期赣南师范学院数学竞赛培训第11套模拟试卷

    数学分析部分     1. 已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.   2. 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$\bex n\pi+\cfrac{\pi}{2}-\cfrac{1}{n\pi} <x_n<n\pi+\cfrac{\pi}{2}. \eex$$   3. 试