论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning

 

Hierarchical Object Detection with Deep Reinforcement Learning

NIPS 2016 WorkShop 

 

  Paper : https://arxiv.org/pdf/1611.03718v1.pdf

  Project Page : https://github.com/imatge-upc/detection-2016-nipsws  

  摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Object  Detection). 关键点在于: 专注于图像的含有更多信息量的区域, 并且放大该区域. 我们训练一个 intelligent  agent, 给定一个图像窗口, 能够确定将注意力集中于预先设定的五个区域中的哪一个. 这个过程迭代的提供了一个等级的图像分析. 我们对比了两个不同的候选 proposal 策略来引导图像搜索: with and without overlap. 此外, 我们的方法对比了两种不同的策略来提取特征: 第一种是对每一个 region proposal 计算新的 feature map ; 另一种方法是对于整幅图像计算 feature maps 并为后续的每一个 region proposal 提供 crop 的feature map.   

 

  模型   Hierarchical Object Detection Model

  我们定义了物体检测问题当做是序列决策过程 (the sequential decision process). 每一个时间步骤, agent 应该决定图像的哪个区域应该集中注意力, 以便于少量的步骤内找到物体. 我们将这个问题看作是 Markov Decision Process , 提供了一个框架来建模 decision making. 

 

  MDP formulation :

  作者首先定义了 MDP 的大致过程 : state, actions, reward

  State :  当前区域 和 记忆向量 构成, 即: the current region and a memory vector. 描述符定义了两个模型: the Image-Zooms model and the Pool45-Crops model . 状态的记忆向量(memory vector)捕获了agent 搜索物体当中,已经选择的过去 4  个 actions. 由于 agent 是学习一个 bounding box 的 refinement procedure, 一个记忆向量编码了这个 refinement procedure 的状态 用来稳定搜索轨迹. 我们将过去的 4 个 actions 编码成一个 one-shot vector. 由于本文定义了 6 个 actions, 所以向量的维度是 24.

 

 

  Actions : 跟 ICCV 2015 年的那个检测的方法一样, 这里的action 也是定义成了图像变换的操作 和 停止操作.

 

 

  Rewards : 此处的设计 与 ICCV 2015 仍然是一致的.       

  

 

  Model :  

  

  我们讨论了两种提取特征的方法, 上面就是所用的大致网络框架. Image-Zooms model and the Pool45-Crops model. 

  对于 Image-Zooms model 来说, 每一个区域都 resize 成 224*224 的大小, 然后抽取 VGG-16 的 Pool 5 layer 的特征. 

  对于 Pool45-Crops model, 图像是 full-resolution 传给 VGG-16 的 Pool 5  layer. 

  

  像 Faster RCNN 的 ROI Pooling 的方法一样, 本文也是采用这种思路, 只是抽取 ROI 的 feature . 像 SSD 一样, 我们根据 ROI 的尺寸来选择 feature map. 对于较大的物体, 本文的方法就选择较深的 feature map, 而较小的物体, 本文就选择较浅的 feature map . 

   

  



  

时间: 2024-10-16 02:26:57

论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning的相关文章

论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline

论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline    如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体.   Problem formulation: Given an image, determine the most influential item in the scene in terms of region

论文笔记之:Playing Atari with Deep Reinforcement Learning

  Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013   Abstract: 本文提出了一种深度学习方法,利用强化学习的方法,直接从高维的感知输入中学习控制策略.模型是一个卷积神经网络,利用 Q-learning的一个变种来进行训练,输入是原始像素,输出是预测将来的奖励的 value function.将此方法应用到 Atari 2600 games 上来,进行测试,发现在所有游戏中都比之前的方法有效

论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

Asynchronous Methods for Deep Reinforcement Learning ICML 2016   深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-

论文笔记之:Collaborative Deep Reinforcement Learning for Joint Object Search

Collaborative Deep Reinforcement Learning for Joint Object Search   CVPR 2017 Motivation: 传统的 bottom-up object region proposals 的方法,由于提取了较多的 proposal,导致后续计算必须依赖于抢的计算能力,如 GPU 等.那么,在计算机不足的情况下,则会导致应用范围受限.而 Active search method (就是 RL 的方法) 则提供了不错的方法,可以很大

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53    这篇文章的 Motivation 来自于 MDNet:    本文所提出的 framework 为:                             

论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

  Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper    摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function.  这个设计的主要特色在于 generalize learning across act

论文笔记之:Deep Reinforcement Learning with Double Q-learning

  Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract  主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimat

18 Issues in Current Deep Reinforcement Learning from ZhiHu

  深度强化学习的18个关键问题   from: https://zhuanlan.zhihu.com/p/32153603     85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中

Deep Reinforcement Learning with a Natural Language Action Space

本文继续分享一篇深度增强学习在NLP中应用的paper,题目是Deep Reinforcement Learning with a Natural Language Action Space,作者是来自微软的Ji He博士,文章最早于2015年11月发在arxiv上,2016年6月8号update. 通过前两篇文章的介绍,基本对DQN在NLP中应用有了一个清晰的认识,与DQN之前应用不同的地方在于两个方面: 1.actions的量级很大. 2.transition tuple的具体形式随着模型来