S3C2410下WinCE6.0的启动过程详解

通过前两篇文章的介绍,我们已经知道NBOOT用来引导EBOOT,继而EBOOT加载并引导WinCE操作系统(NK)。那么,WinCE6.0的启动过程又是怎样的呢?本文基于S3C2410的平台做一个详细的分析。需要说明的是,WinCE6.0的整个启动过程对于同一类型的MCU来说大同小异,如S3C2410和PXA270同属ARM平台的MCU,所以他们的启动过程是类似的,可以说唯一的不同就在OAL处,而WinCE操作系统的启动正是从OAL开始的。
     OAL(OEM Adaptation Layer)即OEM适配层,它的主要作用是在移植WinCE到新的硬件平台时减少操作系统的修改,通俗的说就是为WinCE操作系统抹平MCU的差异,使其能很方便的在不同MCU上运行。所以,OAL包括了和系统硬件通讯的最底层代码。内核则通过OAL跟硬件进行交互。逻辑上,OAL是介于CE内核和设备硬件之间的一个代码层,是一个抽象的概念。物理上,OAL和其他一些库一起链接成可执行文件,在WinCE6.0中对应的文件是OAL.exe,这是OAL的客观存在。WinCE6.0中的OAL跟先前的OAL比,是有一些变化的,它从内核中分离出来成为OAL.exe,而内核则变成了Kernel.dll。这样做的好处是可以单独升级OAL。但整体的OAL结构并没有改变,OEM函数保持一致,OAL和Kernel的接口由共享结构NKGLOBAL实现。这一部分的具体内容下一篇再做介绍。下图所示为WinCE6.0的OAL设计。
      

在移植WinCE到新的硬件平台时,创建OAL是最复杂的任务之一。一般来说,最简单的方法是拷贝一个跟新的硬件平台类似的且成熟的OAL,然后根据硬件的不同进行修改,使其满足目标硬件的特定要求。这里不展开说明,回头再单独整理。
     从EBOOT到OAL.exe的跳转是从OEMLaunch()开始的,函数OEMLaunch()中调用Launch(dwPhysLaunchAddr),它的实现代码如下:

Code
LEAF_ENTRY Launch

    ldr    r2, = PhysicalStart
    ldr     r3, = (VIR_RAM_START - PHY_RAM_START)

    sub     r2, r2, r3

    mov     r1, #0x0070             ; Disable MMU
    mcr     p15, 0, r1, c1, c0, 0
    nop
    mov     pc, r2                  ; Jump to PStart
    nop

    ; MMU & caches now disabled.

PhysicalStart

    mov     r2, #0
    mcr     p15, 0, r2, c8, c7, 0   ; Flush the TLB
    mov     pc, r0            ; Jump to program we are launching.

    函数Launch()的参数为物理地址,因为在跳转之前已将MMU关闭。该地址可通过VIEWBIN来查看,如下图所示:
     
     如何确定这个地址对应的是NK.bin中的哪一个文件呢,先前说是OAL.exe,证据何在。在PB6.0中增加了浏览NK.bin的功能,我们可以利用此功能查看NK.bin的详细情况,如下图所示:     


     从上图中可以看出0x80205394处对应的是NK.exe,而这里的NK.exe即为OAL.exe。
     至此,我们已经知道EBOOT是如何跳转到OAL.exe中的了。接下来继续看OAL.exe的执行过程。
     OAL的启动代码如下:

Code
LEAF_ENTRY StartUp

        ; Compute the OEMAddressTable's physical address and 
        ; load it into r0. KernelStart expects r0 to contain
        ; the physical address of this table. The MMU isn't 
        ; turned on until well into KernelStart.  

        add     r0, pc, #g_oalAddressTable - (. + 8)
        bl      KernelStart

OAL的启动代码和EBOOT的启动代码经常复用,但为了代码的简洁,最好还是分开实现,而且在EBOOT中如果已经初始化了相关硬件,那么OAL的启动代码就可以省去那部分工作,可以很简练,如上面的代码所示。

可以看出,OAL的启动代码又调用了函数KernelStart(),而这个函数是在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\LDR\ARM\armstart.s中实现的,代码如下:

Code
LEAF_ENTRY KernelStart

        mov     r11, r0                         ; (r11) = &OEMAddressTable (save pointer)

        ; figure out the virtual address of OEMAddressTable
        mov     r1, r11                         ; (r1) = &OEMAddressTable (2nd argument to VaFromPa)
        bl      VaFromPa
        mov     r6, r0                          ; (r6) = VA of OEMAddressTable

        ; convert base of PTs to Physical address
        ldr     r4, =PTs                        ; (r4) = virtual address of FirstPT
        mov     r0, r4                          ; (r0) = virtual address of FirstPT
        mov     r1, r11                         ; (r1) = &OEMAddressTable (2nd argument to PaFromVa)
        bl      PaFromVa

        mov     r10, r0                         ; (r10) = ptr to FirstPT (physical)

;       Zero out page tables & kernel data page

        mov     r0, #0                          ; (r0-r3) = 0's to store
        mov     r1, #0
        mov     r2, #0
        mov     r3, #0
        mov     r4, r10                         ; (r4) = first address to clear
        add     r5, r10, #KDEnd-PTs             ; (r5) = last address + 1
18      stmia   r4!, {r0-r3}
        stmia   r4!, {r0-r3}
        cmp     r4, r5
        blo     %B18

        ; read the architecture information
        bl      GetCpuId
        mov     r5, r0 LSR #16                  ; r5 >>= 16
        and     r5, r5, #0x0000000f             ; r5 &= 0x0000000f == architecture id
        
;       Setup 2nd level page table to map the high memory area which contains the
; first level page table, 2nd level page tables, kernel data page, etc.
;       (r5) = architecture id

        add     r4, r10, #HighPT-PTs            ; (r4) = ptr to high page table

        cmp     r5, #ARMv6                      ; v6 or later?
; ARMV6_MMU
        orrge   r0, r10, #PTL2_KRW + PTL2_SMALL_PAGE + ARMV6_MMU_PTL2_SMALL_XN
                                                ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered, nonexecutable
; PRE ARMV6_MMU
        orrlt   r0, r10, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6)
                                                ; Need to replicate AP bits into all 4 fields
        orrlt   r0, r0,  #PTL2_SMALL_PAGE + PREARMV6_MMU_PTL2_SMALL_XN
                                                ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered, nonexecutable
        str     r0, [r4, #0xD0*4]               ; store the entry into 4 slots to map 16K of primary page table
        add     r0, r0, #0x1000                 ; step on the physical address
        str     r0, [r4, #0xD1*4]
        add     r0, r0, #0x1000                 ; step on the physical address
        str     r0, [r4, #0xD2*4]
        add     r0, r0, #0x1000                 ; step on the physical address
        str     r0, [r4, #0xD3*4]

        add     r8, r10, #ExceptionVectors-PTs  ; (r8) = ptr to vector page
        orr     r0, r8, #PTL2_SMALL_PAGE        ; construct the PTE (C=B=0)

;; The exception stacks and the vectors are mapped as a single kr/w page.
;; Any alternative will use more physical memory.
;; Multiple mappings don't provide any real protection: if the vectors were in a r/o page,
;; they could still be corrupted via the kr/w setting required for the stacks.
        cmp     r5, #ARMv6                      ; v6 or later?
; ARMV6_MMU 
        orrge   r0, r0, #PTL2_KRW
; PRE ARMV6_MMU
        orrlt   r0, r0, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6)
                                                ; Need to replicate AP bits into all 4 fields for pre-V6 MMU

        str     r0, [r4, #0xF0*4]               ; store entry for exception stacks and vectors
                                                ; other 3 entries now unused

        add     r9, r10, #KPage-PTs             ; (r9) = ptr to kdata page
        orr     r0, r9, #PTL2_SMALL_PAGE        ; (r0)=PTE for 4K (C=B=0)
        
; ARMV6_MMU (condition codes still set)
        orrge   r0, r0, #PTL2_KRW_URO           ; No subpage access control, so we must set this all to kr/w+ur/o
; PRE ARMV6_MMU
        orrlt   r0, r0, #(PTL2_KRW << 0) + (PTL2_KRW << 2) + (PTL2_KRW_URO << 4)
                                                ; (r0) = set perms kr/w kr/w kr/w+ur/o r/o
        str     r0, [r4, #0xFC*4]               ; store entry for kernel data page
        orr     r0, r4, #PTL1_2Y_TABLE          ; (r0) = 1st level PTE for high memory section
        add     r1, r10, #0x4000
        str     r0, [r1, #-4]                   ; store PTE in last slot of 1st level table

;       Fill in first level page table entries to create "statically mapped" regions
; from the contents of the OEMAddressTable array.
;
;       (r5) = architecture id
;       (r9) = ptr to KData page
;       (r10) = ptr to 1st level page table
;       (r11) = ptr to OEMAddressTable array

        add     r10, r10, #0x2000               ; (r10) = ptr to 1st PTE for "unmapped space"

        mov     r0, #PTL1_SECTION
        orr     r0, r0, #PTL1_KRW               ; (r0)=PTE for 0: 1MB (C=B=0, kernel r/w)
20      mov     r1, r11                         ; (r1) = ptr to OEMAddressTable array (physical)

25      ldr     r2, [r1], #4                    ; (r2) = virtual address to map Bank at
        ldr     r3, [r1], #4                    ; (r3) = physical address to map from
        ldr     r4, [r1], #4                    ; (r4) = num MB to map

        cmp     r4, #0                          ; End of table?
        beq     %F29

        ldr     r12, =0x1FF00000
        and     r2, r2, r12                      ; VA needs 512MB, 1MB aligned.

        ldr     r12, =0xFFF00000
        and     r3, r3, r12                      ; PA needs 4GB, 1MB aligned.

        add     r2, r10, r2, LSR #18
        add     r0, r0, r3                      ; (r0) = PTE for next physical page

28      str     r0, [r2], #4
        add     r0, r0, #0x00100000             ; (r0) = PTE for next physical page

        sub     r4, r4, #1                      ; Decrement number of MB left
        cmp     r4, #0
        bne     %B28                            ; Map next MB

        bic     r0, r0, #0xF0000000             ; Clear Section Base Address Field
        bic     r0, r0, #0x0FF00000             ; Clear Section Base Address Field
        b       %B25                            ; Get next element

29
        sub     r10, r10, #0x2000               ; (r10) = restore address of 1st level page table

        ; The minimal page mappings are setup. Initialize the MMU and turn it on.

        ; there are some CPUs with pipeline issues that requires identity mapping before turning on MMU.
        ; We'll create an identity mapping for the address we'll jump to when turning on MMU on and remove
        ; the mapping after we turn on MMU and running on Virtual address.
        

        ldr     r12, =0xFFF00000                ; (r12) = mask for section bits
        and     r1, pc, r12                     ; physical address of where we are 
                                                ; NOTE: we assume that the KernelStart function never spam across 1M boundary.
        orr     r0, r1, #PTL1_SECTION
        orr     r0, r0, #PTL1_KRW               ; (r0) = PTE for 1M for current physical address, C=B=0, kernel r/w
        add     r7, r10, r1, LSR #18            ; (r7) = 1st level PT entry for the identity map
        ldr     r8, [r7]                        ; (r8) = saved content of the 1st-level PT
        str     r0, [r7]                        ; create the identity map

        mov     r1, #1
        mtc15   r1, c3                          ; Setup access to domain 0 and clear other
        mtc15   r10, c2                         ; setup translation base (physical of 1st level PT)

        mov     r0, #0
        mcr     p15, 0, r0, c8, c7, 0           ; Flush the I&D TLBs

        mfc15   r1, c1
        orr     r1, r1, #0x007F                 ; changed to read-mod-write for ARM920 Enable: MMU, Align, DCache, WriteBuffer

        cmp     r5, #ARMv6                      ; r5 still set        
; ARMV6_MMU
        orrge   r1, r1, #0x3000                 ; vector adjust, ICache
        orrge   r1, r1, #1<<23                  ; V6-format page tables
        orrge   r1, r1, #ARMV6_U_BIT            ; V6-set U bit, let A bit control unalignment support
; PRE ARMV6_MMU
        orrlt   r1, r1, #0x3200                 ; vector adjust, ICache, ROM protection

        ldr     r0, VirtualStart
        cmp     r0, #0                          ; make sure no stall on "mov pc,r0" below
        mtc15   r1, c1                          ; enable the MMU & Caches
        mov     pc, r0                          ;  & jump to new virtual address
        nop

; MMU & caches now enabled.
;
;       (r10) = physcial address of 1st level page table
;       (r7)  = entry in 1st level PT for identity map
;       (r8)  = saved 1st level PT save at (r7)
VStart  ldr     r2, =FirstPT                    ; (r2) = VA of 1st level PT
        sub     r7, r7, r10                     ; (r7) = offset into 1st-level PT
        str     r8, [r2, r7]                    ; restore the temporary identity map
        mcr     p15, 0, r0, c8, c7, 0           ; Flush the I&D TLBs

;
; setup stack for each modes: current mode = supervisor mode
;
        ldr     sp, =KStack
        add     r4, sp, #KData-KStack           ; (r4) = ptr to KDataStruct

        ; setup ABORT stack
        mov     r1, #ABORT_MODE:OR:0xC0
        msr     cpsr_c, r1                      ; switch to Abort Mode w/IRQs disabled
        add     sp, r4, #AbortStack-KData

        ; setup IRQ stack
        mov     r2, #IRQ_MODE:OR:0xC0
        msr     cpsr_c, r2                      ; switch to IRQ Mode w/IRQs disabled
        add     sp, r4, #IntStack-KData

        ; setup FIQ stack
        mov     r3, #FIQ_MODE:OR:0xC0
        msr     cpsr_c, r3                      ; switch to FIQ Mode w/IRQs disabled
        add     sp, r4, #FIQStack-KData

        ; setup UNDEF stack
        mov     r3,  #UNDEF_MODE:OR:0xC0
        msr     cpsr_c, r3                      ; switch to Undefined Mode w/IRQs disabled
        mov     sp, r4                          ; (sp_undef) = &KData

        ; switch back to Supervisor mode
        mov     r0, #SVC_MODE:OR:0xC0
        msr     cpsr_c, r0                      ; switch to Supervisor Mode w/IRQs disabled
        ldr     sp, =KStack

        ; continue initialization in C
        add     r0, sp, #KData-KStack           ; (r0) = ptr to KDataStruct
        str     r6, [r0, #pAddrMap]             ; store VA of OEMAddressTable in KData
        bl      ARMInit          ; call C function to perform the rest of initializations
        ; upon return, (r0) = entry point of kernel.dll

        mov     r12, r0
        ldr     r0, =KData
        mov     pc, r12     ; jump to entry of kernel.dll

从上面的代码可以看出,KernelStart()通过OEMAddressTable初始化了MMU,然后通过调用函数ARMInit()获得kernel.dll的入口点,最后跳转到kernel.dll的入口点处。

为了找到Kernel.dll的入口点,用IDA反汇编kernel.dll文件,可以看到,Kernel.dll的入口点为NKStartup。

NKStartup()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\ARM\ mdarm.c中,代码如下: 

Code
//
// NKStartup - entry point of kernel.dll.
//
// NK Loader setup only the minimal mappings, which includes ARMHigh area, and the cached static mapping area,
// with *EVERYTHING UNCACHED*. Interrupt vectors are not setup either. So, the init sequence reqiures:
// (1) pickup data passed from nk loader
// (2) Find entry point of oal, exchange globals, find out the cache mode.
// (3) fill in the rest of static mapped area (0xa0000000 - 0xbfffffff), PSL faulting address, interrupt vectors,
//     mod stacks, etc. Then, change the 'cached' static mapping area to use cache, and flush I&D TLB.
// (4) continue normal loading of kernel (find KITLdll, call OEMInitDebugSerial, etc.)
//
void NKStartup (struct KDataStruct * pKData)
{
    PFN_OEMInitGlobals pfnInitGlob;
    PFN_DllMain pfnKitlEntry;
    DWORD dwCpuId = GetCpuId ();

    // (1) pickup arguments from the nk loader
    g_pKData            = pKData;
    pTOC                = (const ROMHDR *) pKData->dwTOCAddr;
    g_pOEMAddressTable  = (PADDRMAP) pKData->pAddrMap;

    /* get architecture id and update page protection attributes */
    pKData->dwArchitectureId = (dwCpuId >> 16) & 0xf;
    if (pKData->dwArchitectureId >= ARMArchitectureV6) {
        // v6 or later
        pKData->dwProtMask = PG_V6_PROTECTION;
        pKData->dwRead     = PG_V6_PROT_READ;
        pKData->dwWrite    = PG_V6_PROT_WRITE;
        pKData->dwKrwUro   = PG_V6_PROT_URO_KRW;
        pKData->dwKrwUno   = PG_V6_PROT_UNO_KRW;

    } else {
        // pre-v6
        pKData->dwProtMask = PG_V4_PROTECTION;
        pKData->dwRead     = PG_V4_PROT_READ;
        pKData->dwWrite    = PG_V4_PROT_WRITE;
        pKData->dwKrwUro   = PG_V4_PROT_URO_KRW;
        pKData->dwKrwUno   = PG_V4_PROT_UNO_KRW;
    }

    // initialize nk globals
    FirstROM.pTOC       = (ROMHDR *) pTOC;
    FirstROM.pNext      = 0;
    ROMChain            = &FirstROM;
    KInfoTable[KINX_PTOC] = (long)pTOC;
    KInfoTable[KINX_PAGESIZE] = VM_PAGE_SIZE;

    g_ppdirNK = (PPAGEDIRECTORY) &ArmHigh->firstPT[0];
    pKData->pNk  = g_pNKGlobal;

    // (2) find entry of oal
    pfnInitGlob = (PFN_OEMInitGlobals) pKData->dwOEMInitGlobalsAddr;

    // no checking here, if OAL entry point doesn't exist, we can't continue
    g_pOemGlobal = pfnInitGlob (g_pNKGlobal);
    g_pOemGlobal->dwMainMemoryEndAddress = pTOC->ulRAMEnd;
    pKData->pOem = g_pOemGlobal;

    // setup globals
    pVMProc         = g_pprcNK;
    pActvProc       = g_pprcNK;

    g_pNKGlobal->pfnWriteDebugString = g_pOemGlobal->pfnWriteDebugString;

    // (3) setup vectors, UC mappings, mode stacks, etc.
    ARMSetup ();

    //
    // cache is enabled from here on
    //

    // (4) common startup code.

    // try to load KITL if exist
    if ((pfnKitlEntry = (PFN_DllMain) g_pOemGlobal->pfnKITLGlobalInit) ||
        (pfnKitlEntry = (PFN_DllMain) FindROMDllEntry (pTOC, KITLDLL))) {
        (* pfnKitlEntry) (NULL, DLL_PROCESS_ATTACH, (DWORD) NKKernelLibIoControl);
    }

#ifdef DEBUG
    CurMSec = dwPrevReschedTime = (DWORD) -200000;      // ~3 minutes before wrap
#endif

    OEMInitDebugSerial ();

    // debugchk only works after we have something to print to.
    DEBUGCHK (pKData == (struct KDataStruct *) PUserKData);
    DEBUGCHK (pKData == &ArmHigh->kdata);

    OEMWriteDebugString ((LPWSTR)NKSignon);

    /* Copy interlocked api code into the kpage */
    DEBUGCHK(sizeof(struct KDataStruct) <= FIRST_INTERLOCK);
    DEBUGCHK((InterlockedEnd-InterlockedAPIs)+FIRST_INTERLOCK <= 0x400);
    memcpy((char *)g_pKData+FIRST_INTERLOCK, InterlockedAPIs, InterlockedEnd-InterlockedAPIs);

    /* setup processor version information */
    CEProcessorType     = (dwCpuId >> 4) & 0xFFF;
    CEProcessorLevel    = 4;
    CEProcessorRevision = (WORD) dwCpuId & 0x0f;
    CEInstructionSet    = PROCESSOR_ARM_V4I_INSTRUCTION;

    RETAILMSG (1, (L"ProcessorType=%4.4x  Revision=%d\r\n", CEProcessorType, CEProcessorRevision));
    RETAILMSG (1, (L"OEMAddressTable = %8.8lx\r\n", g_pOEMAddressTable));

    OEMInit();          // initialize firmware

    // flush I&D TLB
    OEMCacheRangeFlush (NULL, 0, CACHE_SYNC_FLUSH_TLB);

    KernelFindMemory();

    DEBUGMSG (1, (TEXT("NKStartup done, starting up kernel.\r\n")));

    KernelStart ();

    // never returned
    DEBUGCHK (0);
}

NKStartup()的代码就不多解释了,注释已经很详细。该函数的最后又调用了KernelStart ()函数。注意这里的KernelStart()跟上面曾提到的KernelStart()是不一样的。这里KernelStart()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\ARM\armtrap.s中,代码和反汇编的对比如下图所示。          
     可以看到,这里调用了KernelInit()和FirstSchedule()这两个函数。先说FirstSchedule(),它开始了WinCE6.0的第一个调度。它的实现跟KernelStart()在同一文件中,而实现代码跟WinCE5.0中完全一样。接下来,我们继续跟踪KernelInit()函数,其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\nkinit.c中,代码如下: 

Code
//------------------------------------------------------------------------------
// KernelInit - Kernel initialization before scheduling the 1st thread
//------------------------------------------------------------------------------

void KernelInit (void) 
{
#ifdef DEBUG
    g_pNKGlobal->pfnWriteDebugString (TEXT("Windows CE KernelInit\r\n"));
#endif
    APICallInit ();         // setup API set
    HeapInit ();            // setup kernel heap
    InitMemoryPool ();      // setup physical memory
    PROCInit ();            // initialize process
    VMInit (g_pprcNK);      // setup VM for kernel
    THRDInit ();            // initialize threads
    MapfileInit ();

#ifdef DEBUG
    g_pNKGlobal->pfnWriteDebugString (TEXT("Scheduling the first thread.\r\n"));
#endif
}

     这段代码跟WinCE5.0中的结构基本一致,但实际上有很大的不同。跟WinCE6.0启动最紧密的函数是THRDInit (),这之前都是做相应的初始化。THRDInit ()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\thread.c中,代码如下:     

Code
//------------------------------------------------------------------------------
// THRDInit - initialize thread handling (called at system startup)
//------------------------------------------------------------------------------
void THRDInit (void) 
{
    LPBYTE      pStack;

    DEBUGLOG (1, g_pprcNK);

    // don't allow thread create one memory drop below 1% available
    if (g_cMinPageThrdCreate < PageFreeCount / 100) {
        g_cMinPageThrdCreate = PageFreeCount / 100;
    }
    
    // map W32 thread priority if OEM choose to
    if (g_pOemGlobal->pfnMapW32Priority) {
        BYTE prioMap[MAX_WIN32_PRIORITY_LEVELS];
        int  i;
        memcpy (prioMap, W32PrioMap, sizeof (prioMap));
        g_pOemGlobal->pfnMapW32Priority (MAX_WIN32_PRIORITY_LEVELS, prioMap);
        // validate the the priority is mono-increase
        for (i = 0; i < MAX_WIN32_PRIORITY_LEVELS-1; i ++) {
            if (prioMap[i] >= prioMap[i+1])
                break;
        }

        DEBUGMSG ((MAX_WIN32_PRIORITY_LEVELS-1) != i, (L"ProcInit: Invalid priority map provided by OEM, Ignored!\r\n"));
        if ((MAX_WIN32_PRIORITY_LEVELS-1) == i) {
            memcpy (W32PrioMap, prioMap, sizeof (prioMap));
        }
    }

    // allocate memory for the 1st thread
    pCurThread = AllocMem (HEAP_THREAD);
    DEBUGCHK (pCurThread);

    dwCurThId = (DWORD) HNDLCreateHandle (&cinfThread, pCurThread, g_pprcNK) & ~1;
    DEBUGCHK (dwCurThId);

    InitThreadStruct (pCurThread, (HANDLE) dwCurThId, g_pprcNK, THREAD_RT_PRIORITY_ABOVE_NORMAL);

    if (g_pOemGlobal->cbCoProcRegSize) {

        DEBUGCHK (g_pOemGlobal->pfnInitCoProcRegs);
        DEBUGCHK (g_pOemGlobal->pfnSaveCoProcRegs);
        DEBUGCHK (g_pOemGlobal->pfnRestoreCoProcRegs);

        // check the debug register related values.
        if (g_pOemGlobal->cbCoProcRegSize > MAX_COPROCREGSIZE) {
            g_pOemGlobal->cbCoProcRegSize = g_pOemGlobal->fSaveCoProcReg = 0;
        } else {
            PNAME pTmp = AllocName (g_pOemGlobal->cbCoProcRegSize);
            DEBUGCHK (pTmp);
            g_dwCoProcPool = pTmp->wPool;
            FreeName (pTmp);
        }
    } else {
        g_pOemGlobal->fSaveCoProcReg = FALSE;
    }
    DEBUGMSG (ZONE_SCHEDULE,(TEXT("cbCoProcRegSize = %d\r\n"), g_pOemGlobal->cbCoProcRegSize));

    AddToDListHead (&g_pprcNK->thrdList, &pCurThread->thLink);
    g_pprcNK->wThrdCnt ++;

#ifdef SHx
    SetCPUGlobals();
    OEMCacheRangeFlush (0, 0, CACHE_SYNC_ALL);
#endif

    if (!OpenExecutable (NULL, TEXT("NK.EXE"), &g_pprcNK->oe, TOKEN_SYSTEM, NULL, 0)) {
        LoadE32 (&g_pprcNK->oe, &g_pprcNK->e32, 0, 0, 0);
        g_pprcNK->BasePtr = (LPVOID)g_pprcNK->e32.e32_vbase;
        UpdateKmodVSize(&g_pprcNK->oe, &g_pprcNK->e32);
    }
    
    // create/setup stack
    pStack = VMCreateStack (g_pprcNK, KRN_STACK_SIZE);
    pCurThread->dwOrigBase = (DWORD) pStack;
    pCurThread->dwOrigStkSize = KRN_STACK_SIZE;
    pCurThread->tlsSecure = pCurThread->tlsNonSecure = pCurThread->tlsPtr = TLSPTR (pStack, KRN_STACK_SIZE);
    pCurThread->hTok = TOKEN_SYSTEM;

    // Save off the thread's program counter for getting its name later.
    pCurThread->dwStartAddr = (DWORD) SystemStartupFunc;

    MDSetupThread (pCurThread, (LPVOID)SystemStartupFunc, 0, TH_KMODE, 0);

    CELOG_ThreadCreate(pCurThread, g_pprcNK, NULL);

    MakeRun(pCurThread);
    DEBUGMSG(ZONE_SCHEDULE,(TEXT("Scheduler: Created master thread %8.8lx\r\n"),pCurThread));

}

    可以看到,这里开始了一个线程,线程处理函数为SystemStartupFunc(),其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c,实现代码如下:     

Code
//------------------------------------------------------------------------------
void
SystemStartupFunc(
    ulong param
    )
{
    HANDLE hTh;

    // record PendEvent address for SetInterruptEvent
    KInfoTable[KINX_PENDEVENTS] = (DWORD) &PendEvents1;

    KernelInit2();

    // adjust alarm resolution if it it's not in bound
    if (g_pOemGlobal->dwAlarmResolution < MIN_NKALARMRESOLUTION_MSEC)
        g_pOemGlobal->dwAlarmResolution = MIN_NKALARMRESOLUTION_MSEC;
    else if (g_pOemGlobal->dwAlarmResolution > MAX_NKALARMRESOLUTION_MSEC)
        g_pOemGlobal->dwAlarmResolution = MAX_NKALARMRESOLUTION_MSEC;
    
    VERIFY (LoaderInit ());
    
    // initialize the compiler /GS cookie - this must happen before other threads
    // start running
    __security_init_cookie();

    PagePoolInit ();

    // This can only be done after the loader initialization
    LoggerInit();           // Initialization for CeLog, profiler, code-coverage, etc.
    SysDebugInit ();        // initialize System Debugger (HW Debug stub, Kernel dump capture, SW Kernel Debug stub)

    // do this now, so that we continue running after we've created the new thread
#ifdef START_KERNEL_MONITOR_THREAD
    hTh = CreateKernelThread(Monitor1,0,THREAD_RT_PRIORITY_ABOVE_NORMAL,0);
    HNDLCloseHandle (g_pprcNK, hTh);
#endif

    pCleanupThread = pCurThread;
    hAlarmThreadWakeup = NKCreateEvent(0,0,0,0);
    DEBUGCHK(hAlarmThreadWakeup);
    InitializeCriticalSection(&rtccs);
    IntrEvents[SYSINTR_RTC_ALARM-SYSINTR_DEVICES] = LockIntrEvt (hAlarmThreadWakeup);
    DEBUGCHK(IntrEvents[SYSINTR_RTC_ALARM-SYSINTR_DEVICES]->phdIntr);

    // Give the OEM a final chance to do a more full-featured init before any
    // apps are started
    KernelIoctl (IOCTL_HAL_POSTINIT, NULL, 0, NULL, 0, NULL);

    InitMsgQueue ();
    InitWatchDog ();

    // create the power handler event and guard thread
    hEvtPwrHndlr = NKCreateEvent (NULL, FALSE, FALSE, NULL);
    DEBUGCHK (hEvtPwrHndlr);
    hTh = CreateKernelThread (PowerHandlerGuardThrd, NULL, THREAD_PWR_GUARD_PRIORITY, 0);
    HNDLCloseHandle (g_pprcNK, hTh);

    // dirty page event, initially set
    hEvtDirtyPage = NKCreateEvent (NULL, FALSE, TRUE, NULL);
    DEBUGCHK (hEvtDirtyPage);

    // we don't want to waste a thread here (create a separate for cleaning dirty pages).
    // Instead, RunApps thread will become "CleanDirtyPage" thread once filesys started
    hTh = CreateKernelThread (RunApps,0,THREAD_RT_PRIORITY_NORMAL,0);
    HNDLCloseHandle (g_pprcNK, hTh);

#define ONE_DAY     86400000

    while (1) {
        KCall((PKFN)SetThreadBasePrio, pCurThread, dwNKAlarmThrdPrio);
        NKWaitForSingleObject (hAlarmThreadWakeup, ONE_DAY);
        NKRefreshKernelAlarm ();
        PageOutIfNeeded();
    }
}

     这里创建了一个内核线程,处理函数为RunApps,继续跟踪RunApps,其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\kmisc.c中,代码如下:

Code
DWORD WINAPI
RunApps(
    LPVOID param
    )
{
    HMODULE hFilesys;
    DEBUGMSG (ZONE_ENTRY, (L"RunApps started\r\n"));

    CELOG_LaunchingFilesys();

    hFilesys = (HMODULE) NKLoadLibraryEx (L"filesys.dll", MAKELONG (LOAD_LIBRARY_IN_KERNEL, LLIB_NO_PAGING), NULL);

    if (hFilesys) {
        FARPROC pfnMain = GetProcAddressA (hFilesys, (LPCSTR) 2);   // WinMain of filesys
        HANDLE hFSReady, hTh;

        DEBUGCHK (pfnMain);

        hFSReady = NKCreateEvent (NULL, TRUE, FALSE, TEXT("SYSTEM/FSReady"));
        hTh = CreateKernelThread ((LPTHREAD_START_ROUTINE)pfnMain, hFilesys, THREAD_RT_PRIORITY_NORMAL, 0);

        DEBUGCHK (hTh && hFSReady);
        HNDLCloseHandle (g_pprcNK, hTh);

        // If pSignalStarted is NULL, we don't have filesys (tinykern). Don't bother waiting for it.
        if (pSignalStarted) {
            NKWaitForSingleObject (hFSReady, INFINITE);

            DEBUGCHK (SystemAPISets[SH_FILESYS_APIS]);

            // Initialize MUI-Resource loader (requires registry)
            InitMUILanguages();

            // Read system settings from registry
            InitSystemSettings ();

            // signal filesys that we're done
            (* pSignalStarted) (0);
        }
        HNDLCloseHandle (g_pprcNK, hFSReady);
   
    } else {
        RETAILMSG (1, (L"Filesys doesn't exist, no app started\r\n"));
    }

    // instead of exiting, we're make this thread cleaning dirty pages in the background.
    CleanPagesInTheBackground ();

    // should've never returned
    DEBUGCHK (0);
    NKExitThread (0);

    return 0;
}

      终于启动filesys.dll了。这个过程简单说明一下,启动filesys.dll后等待其执行的情况,在完成了文件系统的相应的初始化之后,这里继续初始化MUI和系统设置,完成后再通知filesys这边的工作已经完成,filesys继续启动。这一部分的具体内容请参考MSDN,File System Boot Process:http://msdn.microsoft.com/en-us/library/aa912276.aspx。总之,filesys会完成WinCE的最后启动过程,包括gwes.dll和explorer.exe等。至此,WinCE6.0启动完成,如果有LCD且驱动能正常工作,现在就应该能看见可爱的WinCE6.0的界面了。

呵,没想到WinCE6.0的启动过程竟然这么繁长。不过,弄清楚这个启动流程对于移植BSP相当有好处。总结一下整个过程,如下图所示。    


     本文通过跟踪代码的方式,介绍了WinCE6.0的启动流程。流于表面了一点,很多细节应该进一步研究,以后再慢慢看吧。文中有不确切的地方,也请您不吝赐教.

时间: 2024-10-26 01:44:18

S3C2410下WinCE6.0的启动过程详解的相关文章

《嵌入式 Linux应用程序开发标准教程(第2版)》——2.2 Linux启动过程详解

2.2 Linux启动过程详解 嵌入式 Linux应用程序开发标准教程(第2版) 在了解了Linux的常见命令之后,下面详细讲解Linux的启动过程.Linux的启动过程包含了Linux工作原理的精髓,而且在嵌入式开发过程中非常需要这方面的知识. 2.2.1 概述 用户开机启动Linux过程如下: (1)当用户打开PC(intel CPU)的电源时,CPU将自动进入实模式,并从地址0xFFFF0000开始自动执行程序代码,这个地址通常是ROM-BIOS中的地址.这时BIOS进行开机自检,并按BI

VxWorks启动过程详解(下)

上一节主要是从映像的分类和各种映像的大致加载流程上看VxWorks的启动过程,这一节让我们从函数级看一下VxWorks的启动过程: 1. Boot Image + Loadable Images:   下面是具体的流程图:  其中第一阶段的执行流程使用的是上图的左边的源文件中的那些函数(romInit->romStart->usrInit->sysHwinit->usrKernelinit->usrRoot);第二阶段执行流程使用的是上图中右边源文件中的那些函数(sysIni

solaris启动过程详解

在Sparc平台下,Solaris系统中有一个类似PC BIOS的芯片程序(EEPROM OpenBoot)负责识别分区.文 件系统和加载内核,在Solaris 2.6之后的版本中,默认的内核文件存放在/platform/`arch`/kernel/unix 位置,`arch`指令是指明系统的硬件体系,目前一般是i86pc(Intel IA32)或sun4u(Sun UntraSparc). 在Intel体系中,因为没有eeprom firmware,所以系统提供了一个模拟eeprom的引导程序

Android应用框架之应用启动过程详解_Android

在Android的应用框架中,ActivityManagerService是非常重要的一个组件,尽管名字叫做ActivityManagerService,但通过之前的博客介绍,我们知道,四大组件的创建都是有AMS来完成的,其实不仅是应用程序中的组件,连Android应用程序本身也是AMS负责启动的.AMS本身运行在一个独立的进程中,当系统决定要在一个新的进程中启动一个Activity或者Service时就会先启动这个进程.而AMS启动进程的过程是从startProcessLocked启动的. 1

VxWorks启动过程详解(上)

vxworks有三种映像: VxWorks Image的文件类型有三种  Loadable Images:由Boot-ROM引导通过网口或串口下载到RAM  ROM-based Images(压缩/没有压缩):即将Image直接烧入ROM,运行时将Image拷入RAM中运行. ROM-Resident Images:Image的指令部分驻留在ROM中运行,仅将数据段部分拷入RAM. 注意这里说的三种映像都是包含真正操作系统VxWorks的映像,其中后两种可以直接启动并运行起来,但是第一种不行,它

Android应用框架之应用启动过程详解

在Android的应用框架中,ActivityManagerService是非常重要的一个组件,尽管名字叫做ActivityManagerService,但通过之前的博客介绍,我们知道,四大组件的创建都是有AMS来完成的,其实不仅是应用程序中的组件,连Android应用程序本身也是AMS负责启动的.AMS本身运行在一个独立的进程中,当系统决定要在一个新的进程中启动一个Activity或者Service时就会先启动这个进程.而AMS启动进程的过程是从startProcessLocked启动的. 1

DOS启动过程详解

电脑刚启动时,要先从某个磁盘上将一些系统程序读入内存后才能正常工作,我们将这个磁盘叫做启动盘. 通常,我们用A盘或C盘作为启动盘,在特殊情况下,硬盘的其它盘符和少数电脑的光盘也可以作启动盘.制作启动盘需要使用sys命令,可以参看后面的命令部分. DOS系统启动时,要先从启动盘中读取两个系统文件IO.SYS.MSDOS.SYS,然后在启动盘的根目录下寻找并执行 CONFIG.SYS.COMMAND.COM.AUTOEXEC.BAT三个文件.其中IO.SYS.MSDOS.SYS和 COMMAND.C

Linux系统下配置squid代理服务器的过程详解

  简单记录一下Squid透明代理服务器的配置 环境:VirtualBox + CentOS 6.0 + squid-3.1.4-1.el6.i686 0.检查squid是否默认安装,没有安装的先安装 代码如下: [root@Slyar ~]# rpm -qa squid squid-3.1.4-1.el6.i686 1.虚拟机添加双网卡,全部设置桥接,配置IP,eth0作为外网,eth1作为内网,注意配置文件里的网卡MAC地址要和设备匹配! 代码如下: [root@Slyar ~]# vim

DOS的启动过程详解分析_DOS/BAT

电脑刚启动时,要先从某个磁盘上将一些系统程序读入内存后才能正常工作,我们将这个磁盘叫做启动盘. 通常,我们用A盘或C盘作为启动盘,在特殊情况下,硬盘的其它盘符和少数电脑的光盘也可以作启动盘.制作启动盘需要使用sys命令,可以参看后面的命令部分. DOS系统启动时,要先从启动盘中读取两个系统文件IO.SYS.MSDOS.SYS,然后在启动盘的根目录下寻找并执行 CONFIG.SYS.COMMAND.COM.AUTOEXEC.BAT三个文件.其中IO.SYS.MSDOS.SYS和 COMMAND.C