Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection

2017-07-11  19:47:46   CVPR 2017

 

  This paper use GAN to handle the issue of small object detection which is a very hard problem in general object detection. As shown in the following figures, small object and large objects usually shown different representations from the feature level.   

  Thus, it is possbile to use Percetual GAN to super-resolution of feature maps of small objects to obtain better detection performance.  

  It consists of two subnetworks, i.e., a generator network and a perceptual discriminator network. Specifically, the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations. 

  

  Different from normal GAN, this network also introduce a new perceptual loss tailored from the detection purpose. That is to say, the discriminator not only need to deal with the adversarial loss, but also need to justify the detection accuray benefiting from the generated super-resolved features with a perceptual loss.  

 

  The proposed contributions: 

  (1) We are the first to successfully apply GAN-alike models to solve the challenging small-scale object detection problems. 

   (2) We introduce a new conditional generator model that learns the additive residual representation between large and small objects, instead of generating the complete representations as before. 

   (3) We introduce a new perceptual discriminator that provides more comprehensive supervision beneficial for detections, instead of barely differentiating fake and real. 

   (4) Successful applications on traffic sign detection and pedestrian detection have been achieved with the state-of-the-art performance.  

  Figure 2. Training procedure of object detection network based on the Perceptual GAN.

  

  As shown in Figure 2, the generator network aims to generate super-resoved representation for the small object. 

  The discriminator includes two branches, i.e. 

    1. the adversarial branch  for differentiating between the generated superresolved representation. 

    2. the perception branch for justifying the detection accurcy benefiting from the generation representation. 



  ==>> Dicriminative Network Architecture: 

  The D network need to justify the dection accuracy benefiting from the generated super-resovled feature. 

  Given the adversarial loss $L_{dis_a}$ and the perceptual loss $L_{dis_p}$ , a final loss function Ldis can be produced as weighted sum of both individual loss components. Given weighting parameters w1 and w2, we define Ldis = w1 × Ldis_a + w2 × Ldis_p to encourage the generator network to generate super-resolved representation with high detection accuracy. Here we set both w1 and w2 to be one. 

 

    

 



  



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

时间: 2024-10-24 00:49:42

Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection的相关文章

(转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

  Introductory guide to Generative Adversarial Networks (GANs) and their promise!   Introduction Neural Networks have made great progress. They now recognize images and voice at levels comparable to humans. They are also able to understand natural la

论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

  UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2016    摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比,本文旨在链接上这两者之间的缺口.提出了一种 deep convolutional generative adversarial networks (DCGANs),that have ce

SalGAN: Visual saliency prediction with generative adversarial networks

  SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17   摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测.虽然我们老板很不喜欢显著性,但是,做显著性检测的人还是会说:这是有意义的.如本文说的:恩,显著性可以作为 soft-attention,来引导其他计算机视觉任务的进行,也可以直接引导 marketing 领域. 本文区别于其他方法最显著的地方在于:the usag

论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

  Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签.我们在一个数据集上训练一个产生式模型 G 以及 一个判别器 D,输入是N类当中的一个.在训练的时候,D被用于预测输入是属于 N+1的哪一个,这个+1是对应了G的输出.这种方法可以用于创造更加有效的分类器,并且可以比普通的GAN 产生更加高质量的样本.  将产生式模型应用于半监督学习并非一

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

  StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks    本文将利用 GANs 进行高质量图像生成,分为两个阶段进行,coarse to fine 的过程.据说可以生成 256*256 的高清图像. 基于文本生成对应图像的工作已经有了,比如说 Attribute2Image,以及 最开始的基于文本生成图像的文章等等. Stacked Generated A

论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015    摘要:本文提出一种 generative parametric model 能够产生高质量自然图像.我们的方法利用 Laplacian pyramid framework 的框架,从粗到细的方式,利用 CNN 的级联来产生图像.在金字塔的每一层,都用一个 GAN,我们的方法可以产生更高分辨率的图像.      

(转)Deep Learning Research Review Week 1: Generative Adversarial Nets

Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I'll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I'll be summa

论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  2016.10.23    摘要:本文针对传统超分辨方法中存在的结果过于平滑的问题,提出了结合最新的对抗网络的方法,得到了不错的效果.并且针对此网络结构,构建了自己的感知损失函数.先上一张图,展示下强大的结果: Contributions:  GANs 提供了强大的框架来产生高质量的 plausible-looking n

论文札记之 - Generative Adversarial Nets

值此岁末之际,又逢DL浪潮之巅,深觉应该整理下看过的一些 papers,写写自己粗鄙的见解,第一篇就从目前热门的 GAN 开始吧 摘要    GAN 是一个框架 ,有两个 model,一个是用于刻画数据分布的生成式模型 G ; 另一个是判别模型 D ,用于判断数据是从 G 生成的还是从训练样本中采样的.理所应当的, G 模型要让 D 模型相信数据是从自身产生的,因此目标就是 "maximize the probability of D making a mistake" .作为一个判别