Linux内存管理图解【转】

转自:http://www.360doc.com/content/13/0505/15/12218157_283128759.shtml

Linux内存管理图解

2013-05-05  果儿的百科  文章来源

 

Linux内存管理图解
作者:wdy

二、线性地址转物理地址

前面说了Linux中逻辑地址等于线性地址,那么线性地址怎么对应到物理地址呢?这个大家都知道,那就是通过分页机制,具体的说,就是通过页表查找来对应物理地址。

分页是CPU提供的一种机制,Linux只是根据这种机制的规则,利用它实现了内存管理。

分页的基本原理是把线性地址分成固定长度的单元,称为页(page)。页内部连续的线性地址映射到连续的物理地址中。X86每页为4KB(为简化分析,我们不考虑扩展分页的情况)。为了能转换成物理地址,我们需要给CPU提供当前任务的线性地址转物理地址的查找表,即页表(page table),页表存放在内存中。

在保护模式下,控制寄存器CR0的最高位PG位控制着分页管理机制是否生效,如果PG=1,分页机制生效,需通过页表查找才能把线性地址转换物理地址。如果PG=0,则分页机制无效,线性地址就直接作为物理地址。

为了实现每个任务的平坦的虚拟内存和相互隔离,每个任务都有自己的页目录表和页表。

为了节约页表占用的内存空间,x86将线性地址通过页目录表和页表两级查找转换成物理地址。

32位的线性地址被分成3个部分:

最高10位 Directory 页目录表偏移量,中间10位 Table是页表偏移量,最低12位Offset是物理页内的字节偏移量。

页目录表的大小为4KB(刚好是一个页的大小),包含1024项,每个项4字节(32位),表项里存储的内容就是页表的物理地址(因为物理页地址4k字节对齐,物理地址低12位总是0,所以表项里的最低12字节记录了一些其他信息,这里做简化分析)。如果页目录表中的页表尚未分配,则物理地址填0。

页表的大小也是4k,同样包含1024项,每个项4字节,内容为最终物理页的物理内存起始地址。

<ignore_js_op> 

每个活动的任务,必须要先分配给它一个页目录表,并把页目录表的物理地址存入cr3寄存器。页表可以提前分配好,也可以在用到的时候再分配。

还是以 mov    0x80495b0, %eax  中的地址为例分析一下线性地址转物理地址的过程。

前面说到Linux中逻辑地址等于线性地址,那么我们要转换的线性地址就是0x80495b0。转换的过程是由CPU自动完成的,Linux所要做的就是准备好转换所需的页目录表和页表(假设已经准备好,给页目录表和页表分配物理内存的过程很复杂,后文再分析)。

内核先将当前任务的页目录表的物理地址填入cr3寄存器。

线性地址 0x80495b0 转换成二进制后是 0000 1000 0000 0100 1001 0101 1011 0000,最高10位0000 1000 00的十进制是32,CPU查看页目录表第32项,里面存放的是页表的物理地址。线性地址中间10位00 0100 1001 的十进制是73,页表的第73项存储的是最终物理页的物理起始地址。物理页基地址加上线性地址中最低12位的偏移量,CPU就找到了线性地址最终对应的物理内存单元。

我们知道Linux中用户进程线性地址能寻址的范围是0 - 3G,那么是不是需要提前先把这3G虚拟内存的页表都建立好呢?一般情况下,物理内存是远远小于3G的,加上同时有很多进程都在运行,根本无法给每个进程提前建立3G的线性地址页表。Linux利用CPU的一个机制解决了这个问题。进程创建后我们可以给页目录表的表项值都填0,CPU在查找页表时,如果表项的内容为0,则会引发一个缺页异常,进程暂停执行,Linux内核这时候可以通过一系列复杂的算法给分配一个物理页,并把物理页的地址填入表项中,进程再恢复执行。当然进程在这个过程中是被蒙蔽的,它自己的感觉还是正常访问到了物理内存。

怎样防止进程访问不属于自己的线性地址(如内核空间)或无效的地址呢?内核里记录着每个进程能访问的线性地址范围(进程的vm_area_struct 线性区链表和红黑树里存放着),在引发缺页异常的时候,如果内核检查到引发缺页的线性地址不在进程的线性地址范围内,就发出SIGSEGV信号,进程结束,我们将看到程序员最讨厌看到的Segmentation fault。

时间: 2024-09-13 06:46:15

Linux内存管理图解【转】的相关文章

深入理解Linux内存管理机制(一)

深入理解Linux内存管理机制(一)通过本文,您即可以: 1. 存储器硬件结构: 2.分段以及对应的组织方式: 3.分页以及对应的组织方式. 注1:本文以Linux内核2.6.32.59本版为例,其对应的代码可以在http://www.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.32/linux-2.6.32.59.tar.bz2找到. 注2:本文所有的英文专有名词都是我随便翻译的,请对照英文原文进行理解. 注3:推荐使用Source Insig

Linux内存管理初探

作者:王智通   一.前言 二.简单的内存管理器示例 三.GNU malloc算法 四.Kernel Buddy伙伴系统算法 五.Kernel Slab/Slub高速缓存算法   一.前言 这次课程最初的题目叫<linux内存管理>, 可是写着写着就感觉这个题目起的太大了, VM(virtul memory)是操作系统中最抽象最复杂的子系统, 想通过一次课把它全部讲清楚有点不现实. 所以我把这次课程的名字改成内存管理初探,先讲讲linux内存的分配算法, 后续课程中在陆续涉及内存映射与回收机制

Linux内核分析(三)----初识linux内存管理子系统

原文:Linux内核分析(三)----初识linux内存管理子系统 Linux内核分析(三) 昨天我们对内核模块进行了简单的分析,今天为了让我们今后的分析没有太多障碍,我们今天先简单的分析一下linux的内存管理子系统,linux的内存管理子系统相当的庞大,所以我们今天只是初识,只要对其进行简单的了解就好了,不会去追究代码,但是在后面我们还会对内存管理子系统进行一次深度的分析. 在分析今天的内容之前,我们先来看出自http://bbs.chinaunix.net/thread-2018659-2

Linux 内存管理 块内存分配 slab分配器

Linux 内存管理之块内存分配 伙伴系统 伙伴系统是linux用于满足对不同大小块内存分配和释放请求的解决方案. 内存管理区 linux将内存分成三个内存管理区,分别为ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM,并使用三个管理区描述符管理这三个ZONE. 管理区描述符里,有一个元素数为11的free_area数组,分别对应1.2.4.8.16.....不同块的大小,其中的每个元素的类型都是一个名为free_area的结构体,代码位置mm/mmzone.h struct

Linux内存管理原理【转】

转自:http://www.cnblogs.com/zhaoyl/p/3695517.html 本文以32位机器为准,串讲一些内存管理的知识点.   1. 虚拟地址.物理地址.逻辑地址.线性地址 虚拟地址又叫线性地址.linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念.物理地址自不必提.内核的虚拟地址和物理地址,大部分只差一个线性偏移量.用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址. 2.

Linux内存管理【转】

转自:http://www.cnblogs.com/wuchanming/p/4360264.html 转载:http://www.kerneltravel.net/journal/v/mem.htm Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理

Linux内存管理 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书

Linux内存管理

转载:http://www.kerneltravel.net/journal/v/mem.htm Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书籍不惜笔墨重点讨论

linux内存管理-内核用户空间 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491362.html 1,linux内存管理中几个重要的结构体和数组 page unsigned long flags 一组标志,也对页框所在的管理区进行编号 atomic_t _count 该页被引用的次数 atomic_t _mapcount 页框中页表项数目,如果没有则为-1 struct list_head lru 管理page忙碌/空闲链表(inactive_list/active_list)