《数学与泛型编程:高效编程的奥秘》一1.3 阅读准备

1.3 阅读准备

由于书中的很多内容都和数学有关,因此你可能担心自己必须先具备丰富的数学知识,然后才能看懂这本书。其实你只要有逻辑思考能力就行(程序员应该很擅长逻辑思考),笔者并不会要求大家具备中学代数与中学几何之外的其他数学知识。某些章节可能会运用向量(vector)与矩阵(matrix)等线性代数(linear algebra)方面的概念,如果从前没有看过这方面的资料,那么把这些内容跳过去就可以了。若是对本书所用的记法不够熟悉,则请参考附录A。
数学中有一个很重要的部分就是对命题给出形式化证明。本书就包含了许多这样的证明过程。如果你在中学的几何课、计算机科学专业的自动机理论(automata theory)课以及逻辑课中做过一些证明,那么应该很容易就能理解本书所给出的证明。附录B描述了某些常用的证明技巧,并给出了范例。
笔者假设你已经是一名程序员了,而且对C、C++或Java等典型的命令式(imperative)编程语言相当熟悉。尽管书中的范例是用C++写的,但即便你原来没有用C++写过程序,也依然应该看得懂才对。附录C解释了一些C++特有的机制。虽说我们用的是C++语言,但笔者相信,书中所讲的原则能够适用于其他各种语言。
本书所谈的很多编程话题也同时出现在Stepanov与McJones所写的《编程原本》(Elements of Programming)一书中,而后者是从另外一种更加正式的角度来讲解这些话题的。想要深入研究这些话题的读者可以参考那本书,并将其与本书结合起来阅读。在本书里,我们偶尔也会提到《编程原本》中的相关章节。

时间: 2024-10-31 18:34:21

《数学与泛型编程:高效编程的奥秘》一1.3 阅读准备的相关文章

《数学与泛型编程:高效编程的奥秘》一1.1 编程与数学

1.1 编程与数学 那么,这种泛型编程的想法是从哪里来的?我们又应该怎样来学习它呢?这种想法是从数学中衍生出来的,尤其与抽象代数(abstract algebra)这个数学分支有关.为了使大家能够理解这种编程方式,本书会对抽象代数做一些介绍,并着重讲解怎样从抽象的运算属性来认识对象.这个话题一般是数学专业的大学生才去研究的,然而笔者认为,它对于我们理解泛型编程会起到关键的作用.实际上,还有很多基本的编程概念也同样来自数学.对这些概念的产生及变化过程加以学习,能够促使我们更好地思考软件的设计问题.

《数学与泛型编程:高效编程的奥秘》一第1章 内容提要

第1章 内 容 提 要 不懂数学,就无法了解世界. --罗吉尔·培根(Roger Bacon),<大著作>(Opus Majus) 这是一本谈编程的书,但是它与大多数的编程书都不太一样,因为除了算法和代码之外,本书还会给出数学证明和一些讲述从古代到20世纪各种数学发现的历史材料. 另一个更为具体的特色在于:这是一本谈论泛型编程(generic programming)的书.泛型编程是出现于20世纪80年代的编程方法,在20世纪90年代随着C++标准模板库(Standard Template L

《数学与泛型编程:高效编程的奥秘》一2.2 改进该算法

2.2 改进该算法 从加法的执行次数上面来看,multiply1函数确实做得不错,但它毕竟执行了?log n?次递归调用.由于函数调用的开销很大,因此我们想把程序中的递归调用去掉,以避免此类开销. 在对函数进行转化时,我们所秉持的一项理念是:通用的工作实现起来经常比具体的工作还要简单(It is often easier to do more work rather than less.).就本例来说,我们要按照下面这种通用的方式进行计算: r + na 其中的r是一个会在运算过程中持续更新的值

《数学与泛型编程:高效编程的奥秘》一导读

前言 如果将计算机科学与数学分离,那么这两者的发展都会有很大困难.于是,我们就试图通过一些课程,把人类文明早期就有的数学活动与现代才有的计算机活动结合起来.本书正是基于这样一种课程而编写的.能够与友人Dan Rose合作,我深感荣幸.他的管理工作令我们团队能够把泛型编程的原则运用到搜索引擎的设计上来,而且他愿意把我原来那些相当分散的课程内容集结成现在这样一本连贯的书籍.Dan和我都希望读者能够喜欢我们这次合作的成果.--A.A.S. 大家将要阅读的这本书是根据"Algorithmic Journ

《数学与泛型编程:高效编程的奥秘》一第2章 算法初谈

第2章 算 法 初 谈 摩西很快就学会了算术与几何. --这些知识是他从埃及人那里学来的, 埃及人最重视的研究科目是数学. --亚历山大的斐洛(Philo of Alexandria),<摩西生平>(Life of Moses) 算法(algorithm)是用来完成计算任务的一系列有限步骤.由于算法与计算机编程的关系特别密切,因此很多人或许认为,算法是一个来自计算机科学专业的概念.其实算法这个词已经有几千年历史了.数学中充满了各种各样的算法,有些算法我们天天在用,就连小学生计算加法时所用的竖式

《数学与泛型编程:高效编程的奥秘》一3.1 整数的几何属性

3.1 整数的几何属性 毕达哥拉斯(Pythagoras)这个名字,大多数人都是从同名的定理中听说的.这位古希腊的数学家和哲学家曾经提出一个理念:要想理解世界,就必须先懂得数学.他还发现了数字的很多奇妙性质,而且认为这些发现无论有没有实际的用途,其本身都具备巨大的价值.亚里士多德的学生亚里士多塞诺斯(Aristoxenus)曾经说道:"他极其重视算术研究工作,并把这些研究从实用的商业领域中划分出来,单独加以推进." 毕达哥拉斯(Pythagoras,约公元前570-公元前490) 毕达

《数学与泛型编程:高效编程的奥秘》一1.2 从历史的角度来讲解

1.2 从历史的角度来讲解 如果能把某个话题融入故事中,那么我们学起来就会更容易一些,而且也会觉得更为有趣.我们想要知道:在某个时间发生了什么事件?都有谁与该事件相关?这些人是怎样产生某种想法的?他们是要在别人的基础之上进行研究,还是要驳斥别人的结论?为此,本书在介绍数学概念时,还会讲一些与此有关的故事,并谈一下提出这些概念的人.笔者通常用一份简要的传记来描述身为故事主角的数学家,这些小传不会像百科全书里面写得那样详尽,它只是想令你对这位数学家的情况有所了解而已. 尽管我们会从历史的角度来谈论某

《数学与泛型编程:高效编程的奥秘》一3.7 本章要点

3.7 本章要点 古希腊人对数字的"形状"以及其他一些属性(例如是不是素数,是不是完美数等)很着迷,这就给数论这一数学领域打下了基础.他们所提出的某些算法(例如埃拉托斯特尼筛法)即便在今天来看,也是相当优雅的,只不过我们还可以通过某些现代的优化技术来继续提升其效率. * 读完本章之后,大家已经看到了两种能够证明是无理数的方法,一种是几何方法,另一种是代数方法.能够针对同一个数学现象提出两种完全不同的证明,这是相当好的结果,而且数学家实际上也必须像这样去寻找同一个数学现象的多种证法,以增

《数学与泛型编程:高效编程的奥秘》一2.1 埃及乘法算法

2.1 埃及乘法算法 与所有的古文明一样,埃及的计数系统也没有按位置计数这一概念,而且无法表示0.于是,乘法计算起来就特别困难,只有少数受过训练的专家才会做.(你可以想象一下:如果自己只能像使用罗马数字那样来做运算,而且要计算的数字又很大,那么算起来是相当困难的.)怎样来定义乘法呢?宽泛地说,我们可以认为乘法就是"把某物多次加到它自己上面",如果说得严谨一些,那么可以分两种情况来定义:一种情况是乘以1,另一种情况是乘以一个大于1的数.我们将乘以1的乘法运算,定义如下:1a = a(2.