算法研究:堆栈与深度优先搜索(迷宫问题)

堆栈的访问规则被限制为Push和Pop两种操作,Push(入栈或压栈)向栈顶添加元素,Pop(出栈或弹出)则取出当前栈 顶的元素,也就是说,只能访问栈顶元素而不能访问栈中其它元素。

现在我们用堆栈解决一个有意思的问题,定义 一个二维数组:

int maze[5][5] = {

0, 1, 0, 0, 0,

0, 1, 0, 1, 0,

0, 0, 0, 0, 0,

0, 1, 1, 1, 0,

0, 0, 0, 1, 0,

};

它表示一个迷宫,其中的1表示墙壁,0表示可以走 的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的路线。程序如下:(参考《Linux c 编程一 站式学习》)

#include<stdio.h>

typedef struct point
{
    int row, col;
} item_t;
#define MAX_ROW 5
#define MAX_COL 5

static item_t stack[512];
static int top = 0;

void push(item_t p)
{
    stack[top++] = p;
}

item_t pop(void)
{
    return stack[--top];
}

int is_empty(void)
{
    return top == 0;
}

int maze[MAX_ROW][MAX_COL] =
{
    0, 1, 0, 0, 0,
    0, 1, 0, 1, 0,
    0, 0, 0, 0, 0,
    0, 1, 1, 1, 0,
    0, 0, 0, 1, 0,
};

void print_maze(void)
{
    int i, j;
    for (i = 0; i < MAX_ROW; i++)
    {
        for (j = 0; j < MAX_COL; j++)
            printf("%d ", maze[i][j]);
        putchar('\n');
    }
    printf("*********\n");
}

struct point predecessor[MAX_ROW][MAX_COL] =
{
    {{ -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}},
    {{ -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}},
    {{ -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}},
    {{ -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}},
    {{ -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}, { -1, -1}},
};

void visit(int row, int col, struct point pre)
{
    struct point visit_point = { row, col };
    maze[row][col] = 2;
    predecessor[row][col] = pre;
    push(visit_point);
}

int main(void)
{
    struct point p = { 0, 0 };
    maze[p.row][p.col] = 2;
    push(p);
    while (!is_empty())
    {
        p = pop();
        if (p.row == MAX_ROW - 1 /* goal */
                && p.col == MAX_COL - 1)
            break;
        if (p.col + 1 < MAX_COL
                /* right */
                && maze[p.row][p.col + 1] == 0)
            visit(p.row, p.col + 1, p);
        if (p.row + 1 < MAX_ROW
                /* down */
                && maze[p.row + 1][p.col] == 0)
            visit(p.row + 1, p.col, p);
        if (p.col - 1 >= 0
                /* left */
                && maze[p.row][p.col - 1] == 0)
            visit(p.row, p.col - 1, p);
        if (p.row - 1 >= 0
                /* up */
                && maze[p.row - 1][p.col] == 0)
            visit(p.row - 1, p.col, p);
        print_maze();
    }

    if (p.row == MAX_ROW - 1 && p.col == MAX_COL - 1)
    {
        printf("(%d, %d)\n", p.row, p.col);
        while (predecessor[p.row][p.col].row != -1)
        {
            p = predecessor[p.row][p.col];
            printf("(%d, %d)\n", p.row, p.col);
        }
    }
    else
        printf("No path!\n");
    return 0;
}

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索int
, struct
, 迷宫
, 堆栈
, row
, col
, void
cols
,以便于您获取更多的相关知识。

时间: 2024-09-03 00:24:35

算法研究:堆栈与深度优先搜索(迷宫问题)的相关文章

人工智能: 自动寻路算法实现(二、深度优先搜索)

前言 本篇文章是机器人自动寻路算法实现的第二章.我们要讨论的是一个在一个M×N的格子的房间中,有若干格子里有灰尘,有若干格子里有障碍物,而我们的扫地机器人则是要在不经过障碍物格子的前提下清理掉房间内的灰尘.具体的问题情景请查看人工智能: 自动寻路算法实现(一.广度优先搜索)这篇文章,即我们这个系列的第一篇文章.在上一篇文章里,我们介绍了通过广度优先搜索算法来实现扫地机器人自动寻路的功能.在这篇文章中,我们要介绍与之相对应的另一种算法:深度优先搜索算法. 项目下载地址 正文 算法介绍 深度优先算法

算法研究:图的深度优先遍历

图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程 就叫做图的遍历(Traverse Graph). 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也 有称为深度优先搜索,简称为DFS.第二种是<广度优先遍历(Breadth  First Search)>,也有称为广度优先搜索, 简称为BFS.我们在<堆栈与深度优先搜索>中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述.我们也可以把

人工智能: 自动寻路算法实现(一、广度优先搜索)

前言 随着人工智能技术的日益发达,我们的生活中也出现了越来越多的智能产品.我们今天要关注的是智能家居中的一员:扫地机器人.智能扫地机器人可以在主人不在家的情况下自动检测到地面上的灰尘,并且进行清扫.有些更为对路线进行规划,找到可以清理灰尘的最短路径,达到省电的效果.当然,绕过障碍物也是必须拥有的技能.我们今天就来看一下扫地机器人自动寻路的算法的简单实现.这里我们不对机器人如何识别出灰尘进行讨论,我们只讨论发现了灰尘之后,机器人的路径规划进行一个分析.为了简单起见,我们假设机器人所处在的是一个M×

【双11背后的技术】基于深度强化学习与自适应在线学习的搜索和推荐算法研究

选自<不一样的技术创新--阿里巴巴2016双11背后的技术>,全书目录:https://yq.aliyun.com/articles/68637 本文作者:灵培.霹雳.哲予 1. 搜索算法研究与实践 1.1 背景 淘宝的搜索引擎涉及对上亿商品的毫秒级处理响应,而淘宝的用户不仅数量巨大,其行为特点以及对商品的偏好也具有丰富性和多样性.因此,要让搜索引擎对不同特点的用户作出针对性的排序,并以此带动搜索引导的成交提升,是一个极具挑战性的问题.传统的Learning to Rank(LTR)方法主要是

关于求迷宫最短路径(利用深度优先搜索)的问题

问题描述 关于求迷宫最短路径(利用深度优先搜索)的问题 利用深度优先查找迷宫的最短路径的程序,哪位大神可以帮帮忙吗? 解决方案 迷宫最短路径问题 解决方案二: http://bbs.csdn.net/topics/330218304 解决方案三: http://www.cnblogs.com/GoAhead/archive/2012/09/29/2708673.html

算法起步之深度优先搜索

原文:算法起步之深度优先搜索        说完广度优先搜索后,我们来看图的另一种遍历形式,深度优先搜索算法,深度优先总是对刚发现的节点的出阿发边进行探索,直到该节点的所有出发边都被发现为止.一旦所有的出发边都被发现,搜索就回溯到前驱结点,来搜索前驱结点的出发边.反复进行直到全部遍历.我们用递归跟栈两种方式进行实现,其实归根到底递归也是栈实现的.        递归实现:   public class DFS { private boolean[] visited; public void df

【算法导论】图的深度优先搜索遍历(DFS)

        关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS).         深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点,依次类推,尽可能向纵深方向搜索,所以称为深度优先搜索遍历.显然这种搜索方法具有递归的性质.图的BFS和树的搜索遍历很类似,只是其存储方式不同.         其基本思想为:从图中某一顶点vi出发,访问此顶点,并进行标记,然后依次搜索vi的每个邻接点vj:若vj未被访

【算法导论】有向图的深度优先搜索遍历

        在前面的文章中,我已经讨论了无向图的遍历,现在发现在有向图中,可能会发生无法遍历到所有节点的情况.因此在经历一次深度优先搜索遍历后,如果还存在未被搜索到的节点,则需要再从新的节点开始进行深度优先搜索遍历,直到访问完所有节点. 以下面的有向图为例:         如果从a开始进行深度优先搜索遍历,则会得到  a b c d h g f 后结束,因此我们还要 从未访问到的节点e进行第二次深度优先搜索遍历得到e.在前面的深度优先搜索的基础上,有向图的深度优先搜索程序实现如下: #in

算法研究:图的广度优先遍历

图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程 就叫做图的遍历(Traverse Graph). 图的遍历方法一般有两种,第一种是我们在前面讲过的<深度优先遍历 (Depth First Search)>,也有称为深度优先搜索,简称为DFS.第二种是广度优先遍历(Breadth  First Search), 也有称为广度优先搜索,简称为BFS.我们在<队列与广度优先搜索>中已经较为详细地讲述了广度优先搜索的策略,这里 不再