UVa 757 / POJ 1042 Gone Fishing: 枚举&贪心&想法题&优先队列

757 - Gone Fishing

Time limit: 3.000 seconds

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=698

http://poj.org/problem?id=1042

John is going on a fishing trip. He has h hours available ( ), and there are n lakes in the area ( ) all reachable along a single, one-way road. John starts at lake 1, but he can finish at any lake he wants. He can only travel from one lake to the next one, but he does not have to stop at any lake unless he wishes to. For each , the number of 5-minute intervals it takes to travel from lakei to lake i + 1 is denoted ti ( ). For example, t3 = 4 means that it takes 20 minutes to travel from lake 3 to lake 4.

To help plan his fishing trip, John has gathered some information about the lakes. For each lake i, the number of fish expected to be caught in the initial 5 minutes, denoted fi ( ), is known. Each 5 minutes of fishing decreases the number of fish expected to be caught in the next 5-minute interval by a constant rate of di ( ). If the number of fish expected to be caught in an interval is less than or equal to di, there will be no more fish left in the lake in the next interval. To simplify the planning, John assumes that no one else will be fishing at the lakes to affect the number of fish he expects to catch.

Write a program to help John plan his fishing trip to maximize the number of fish expected to be caught. The number of minutes spent at each lake must be a multiple of 5.

Input

You will be given a number of cases in the input. Each case starts with a line containing n. This is followed by a line containing h. Next, there is a line of n integers specifying fi ( ), then a line of n integers di ( ), and finally, a line of n - 1 integers ti ( ). Input is terminated by a case in which n = 0.

Output

For each test case, print the number of minutes spent at each lake, separated by commas, for the plan achieving the maximum number of fish expected to be caught (you should print the entire plan on one line even if it exceeds 80 characters). This is followed by a line containing the number of fish expected. If multiple plans exist, choose the one that spends as long as possible at lake 1, even if no fish are expected to be caught in some intervals. If there is still a tie, choose the one that spends as long as possible at lake 2, and so on. Insert a blank line between cases.

Sample Input

2
1
10 1
2 5
2
4
4
10 15 20 17
0 3 4 3
1 2 3
4
4
10 15 50 30
0 3 4 3
1 2 3
0

Sample Output

45, 5
Number of fish expected: 31

240, 0, 0, 0
Number of fish expected: 480

115, 10, 50, 35
Number of fish expected: 724

首先枚举去哪些湖钓鱼。

由于每个湖中鱼的数量只与钓了多长时间有关,与什么时候钓无关。因此我们可以一次将移动的时间全部扣除,这样每时每刻我们都可以选择鱼数量最多的湖。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索at&t汇编语言
, number
, expected a
, to
, line
, expected
, of
, The
, Fishing
gone
poj1042、3ecaa42e0d10422d、tja1042、mysql 1042、tja1042t,以便于您获取更多的相关知识。

时间: 2024-11-01 05:36:56

UVa 757 / POJ 1042 Gone Fishing: 枚举&贪心&想法题&优先队列的相关文章

UVa 10795 A Different Task:汉诺塔&想法题

10795 - A Different Task Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=456&page=show_problem&problem=1736 The (Three peg) Tower of Hanoi problem is a popular one in computer science

CERC 2004 / UVa 1335 Beijing Guards:二分&贪心&想法题

1335 - Beijing Guards Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=456&page=show_problem&problem=4081 Beijing was once surrounded by four rings of city walls: the Forbidden City Wa

UVa 757:Gone Fishing

[题目链接] http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=113&page=show_problem&problem=698 [原题]John is going on a fishing trip. He has h hours available ( ), and there are n lakes in the area ( ) all reachable a

uva 757 - Gone Fishing

点击打开链接uva 757 题目意思:            john现有h个小时的空闲时间,他打算去钓鱼.john钓鱼的地方共有n个湖,所有的湖沿着一条单向路顺序排列(john每在一个湖钓完鱼后,他只能走到下一个湖继续钓), john必须从1号湖开始钓起,但是他可以在任何一个湖结束他此次钓鱼的行程.           john在每个湖中每5分钟钓的鱼数(此题中以5分钟作为单位时间),随时间的增长而线性递减.而每个湖中头5分钟可以钓到的鱼数以及每个湖中相邻5分钟钓鱼数的减少量,input中均会

uva 652---Eight Poj 1077 ---Eight zoj 1217---Eight (八数码解法2)

点击打开链接uva 652 点击打开链接hdu 1043 点击打开链接zoj 1217                                                              八数码解法2 解题整体思路 :    预处理+哈希判重+打表+输出路径                               我们知道对于八数码问题而言,每一个状态就是每一个格子的编号(我们把空格看成9),那么最多有9!种,那么现在针对每一种状态都有9个数字,难道我们开一个9维数组,

UVa 748/POJ 1001 Exponentiation:浮点高精度求幂&正则表达式的应用

748 - Exponentiation Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=97&page=show_problem&problem=689 http://poj.org/problem?id=1001 Problems involving the computation of exact values

UVa 755 / POJ 1002 487--3279 (排序)

755 - 487--3279 Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=98&page=show_problem&problem=696 http://poj.org/problem?id=1002 Businesses like to have memorable telephone numbers. On

UVa 113 / POJ 2109 Power of Cryptography

使用double处理大整数&泰勒公式与误差分析 113 - Power of Cryptography Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=99&page=show_problem&problem=49 http://poj.org/problem?id=2109 Background Curre

UVa 270 / POJ 1118 Lining Up:计算几何

270 - Lining Up Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=113&page=show_problem&problem=206 http://poj.org/problem?id=1118 ``How am I ever going to solve this problem?" sai