【request_firmware】 linux内核下载模块固件接口【转】

转自:http://blog.csdn.net/magod/article/details/6049558

[-]

  1. 8 处理固件
    1. 1481 内核固件接口
    2. 1482 它如何工作

14.8. 处理固件

作为一个驱动作者, 你可能发现你面对一个设备必须在它能支持工作前下载固件到它里面. 硬件市场的许多地方的竞争是如此得强烈, 以至于甚至一点用作设备控制固件的 EEPROM 的成本制造商都不愿意花费. 因此固件发布在随硬件一起的一张 CD 上, 并且操作系统负责传送固件到设备自身.

你可能想解决固件问题使用这样的一个声明:

static char my_firmware[] = { 0x34, 0x78, 0xa4, ... }; 

但是, 这个方法几乎肯定是一个错误. 将固件编码到一个驱动扩大了驱动的代码, 使固件升级困难, 并且非常可能产生许可问题. 供应商不可能已经发布固件映象在 GPL 之下, 因此和 GPL-许可的代码混合常常是一个错误. 为此, 包含内嵌固件的驱动不可能被接受到主流内核或者被 Linux 发布者包含.

14.8.1. 内核固件接口

正确的方法是当你需要它时从用户空间获取它. 但是, 请抵制试图从内核空间直接打开包含固件的文件的诱惑; 那是一个易出错的操作, 并且它安放了策略(以一个文件名的形式)到内核. 相反, 正确的方法时使用固件接口, 它就是为此而创建的:

#include <linux/firmware.h>

int request_firmware(const struct firmware **fw, char *name, 

struct device *device); 

调用 request_firmware 要求用户空间定位并提供一个固件映象给内核; 我们一会儿看它如何工作的细节. name 应当标识需要的固件; 正常的用法是供应者提供的固件文件名. 某些象 my_firmware.bin 的名子是典型的. 如果固件被成功加载, 返回值是 0(负责常用的错误码被返回), 并且 fw 参数指向一个这些结构:

struct firmware {

size_t size;

u8 *data; 

}; 

那个结构包含实际的固件, 它现在可被下载到设备中. 小心这个固件是来自用户空间的未被检查的数据; 你应当在发送它到硬件之前运用任何并且所有的你能够想到的检查来说服你自己它是正确的固件映象. 设备固件常常包含标识串, 校验和, 等等; 在信任数据前全部检查它们.

在你已经发送固件到设备前, 你应当释放 in-kernel 结构, 使用:

void release_firmware(struct firmware *fw); 

因为 request_firmware 请求用户空间来帮忙, 它保证在返回前睡眠. 如果你的驱动当它必须请求固件时不在睡眠的位置, 异步的替代方法可能要使用:

int request_firmware_nowait(struct module *module,

char *name, struct device *device, void *context,

void (*cont)(const struct firmware *fw, void *context)); 

这里额外的参数是 moudle( 它将一直是 THIS_MODULE), context (一个固件子系统不使用的私有数据指针), 和 cont. 如果都进行顺利, request_firmware_nowait 开始固件加载过程并且返回 0. 在将来某个时间, cont 将用加载的结果被调用. 如果由于某些原因固件加载失败, fw 是 NULL.

14.8.2. 它如何工作

固件子系统使用 sysfs 和热插拔机制. 当调用 request_firmware, 一个新目录在 /sys/class/firmware 下使用你的驱动的名子被创建. 那个目录包含 3 个属性:

loading

这个属性应当被加载固件的用户空间进程设置为 1. 当加载进程完成, 它应当设为 0. 写一个值 -1 到 loading 会中止固件加载进程.

data

data 是一个二进制的接收固件数据自身的属性. 在设置 loading 后, 用户空间进程应当写固件到这个属性.

device

这个属性是一个符号连接到 /sys/devices 下面的被关联入口项.

一旦创建了 sysfs 入口项, 内核为你的设备产生一个热插拔事件. 传递给热插拔处理者的环境包括一个变量 FIRMWARE, 它被设置为提供给 request_firmware 的名子. 这个处理者应当定位固件文件, 并且拷贝它到内核使用提供的属性. 如果这个文件无法找到, 处理者应当设置 loading 属性为 -1.

如果一个固件请求在 10 秒内没有被服务, 内核就放弃并返回一个失败状态给驱动. 超时周期可通过 sysfs 属性 /sys/class/firmware/timeout 属性改变.

使用 request_firmware 接口允许你随你的驱动发布设备固件. 当正确地集成到热插拔机制, 固件加载子系统允许设备简化工作"在盒子之外" 显然这是处理问题的最好方法.

但是, 请允许我们提出多一条警告: 设备固件没有制造商的许可不应当发布. 许多制造商会同意在合理的条款下许可它们的固件, 如果客气地请求; 一些其他的可能不何在. 无论如何, 在没有许可时拷贝和发布它们的固件是对版权法的破坏并且招致麻烦.

时间: 2024-11-08 22:52:50

【request_firmware】 linux内核下载模块固件接口【转】的相关文章

linux内核中的排序接口--sort函数

linux内核中的sort函数,其实跟我们所说的qsort函数很像,我们来看看qsort: qsort 的函数原型是 void qsort(void*base,size_t num,size_t width,int(__cdecl*compare)(const void*,const void*)); 参数:  1 .待排序数组首地址 2 .数组中待排序元素数量 3 .各元素的占用空间大小 4 .指向函数的指针,用于确定排序的顺序. 其中compare函数应写为: 1 2 3 4 int com

Linux 内核驱动--多点触摸接口【转】

转自:http://blog.csdn.net/joard_yang/article/details/6225937 译自:linux-2.6.31.14/Documentation/input/multi-touch-protocol.txt 简介 为了使用功能强大的多点触控设备,就需要一种方案去上报用户层所需的详细的手指触摸数据.这个文档所描述的多点触控协议可以让内核驱动程序向用户层上报任意多指的数据信息. 使用说明 单点触摸信息是以ABS承载并按一定顺序发送,如BTN_TOUCH.ABS_

解析Linux内核的基本的模块管理与时间管理操作---超时处理【转】

转自:http://www.jb51.net/article/79960.htm 这篇文章主要介绍了Linux内核的基本的模块管理与时间管理操作,包括模块加载卸载函数的使用和定时器的用法等知识,需要的朋友可以参考下   内核模块管理Linux设备驱动会以内核模块的形式出现,因此学会编写Linux内核模块编程是学习linux设备驱动的先决条件. Linux内核的整体结构非常庞大,其包含的组件非常多.我们把需要的功能都编译到linux内核,以模块方式扩展内核功能. 先来看下最简单的内核模块 ? 1

linux内核md源代码解读 二 md模块初始化

在编译完成linux内核源代码的时候,drivers/md目录下会生成多个ko文件,那么这些内核模块哪一个先加载,哪一个后加载的呢?例如md-mod.ko, raid5.ko, raid10.ko,这些模块是一起加载的呢,还是有先后顺序呢?如果熟悉linux内核编程的话,知道有一个request_module函数,这个函数用于请求加载一个模块,但这个函数并不能说明一个模块对另一个模块的依赖关系.准确的信息还是来自于Kconfig,这里只抽取Kconfig中相关的部分: config BLK_DE

在Ubuntu上为Android增加硬件抽象层(HAL)模块访问Linux内核驱动程序

  在Android硬件抽象层(HAL)概要介绍和学习计划一文中,我们简要介绍了在Android系统为为硬件编写驱动程序的方法.简单来说,硬件驱动程序一方面分布在Linux内核中,另一方面分布在用户空间的硬件抽象层中.接着,在Ubuntu上为Android系统编写Linux内核驱动程序一文中举例子说明了如何在Linux内核编写驱动程序.在这一篇文章中,我们将继续介绍Android系统硬件驱动程序的另一方面实现,即如何在硬件抽象层中增加硬件模块来和内核驱动程序交互.在这篇文章中,我们还将学习到如何

Ubuntu中为Android增加硬件抽象层(HAL)模块访问Linux内核驱动程序

在Ubuntu Android简单介绍硬件抽象层(HAL)一文中,我们简要介绍了在Android系统为为硬件编写驱动程序的方法.简单来说,硬件驱动程序一方面分布在Linux内核中,另一方面分布在用户空间的硬件抽象层中.接着Ubuntu Android系统上编写Linux内核驱动程序实现方法一文中举例子说明了如何在Linux内核编写驱动程序.在这一篇文章中,我们将继续介绍Android系统硬件驱动程序的另一方面实现,即如何在硬件抽象层中增加硬件模块来和内核驱动程序交互.在这篇文章中,我们还将学习到

何处下载CentOS的Linux内核的源代码?

  今天既不分析内核源代码,也不讲如何编译源代码,只说从何处下载你的CentOS所对应的Linux内核的源代码. 一.准备工作 1. 如何查询你的CentOS的版本 参见:http://blog.csdn.net/yunying_si/article/details/23679769 2. 如何查询Linux 内核版本 [root@syy ~]# uname -r 2.6.32-431.3.1.el6.i686 二.何处下载 经过上面的准备工作,我知道我的 CentOS的发布版本是 6.5,内核

请教 编译linux内核静态加载模块问题!

问题描述 请教 编译linux内核静态加载模块问题! make menuconfig时,若让所有模块以静态模块方式编入内核Y或*,怎么改啊.. 解决方案 http://blog.csdn.net/zjg555543/article/details/7677438 解决方案二: 你最好是通过专用的 Linux 内核配置工具来选择,如果这个工具支持你就可以配置为静态加载. 当然,也不是所有模块都是可以静态编译的.模块静态编译到内核和编译成模块实例

内核版本差异-LSM在linux内核版本2.6.22之后如何注册安全模块

问题描述 LSM在linux内核版本2.6.22之后如何注册安全模块 在2.6.22之前我们可以通过register_security(ops)注册安全模块,加载成功后就可以进行访问控制,而在版本较高的内核中,例如我用的3.4.70 调用register_security(ops)是不能成功的,而unregister_security()函数在security.c中是不存在的,请问这种情况下,如何注册安全模块以及如何撤销该模块? 最后还想问Linux内核这样改的原因是什么? 求高手讲解下,多谢