Kruskal算法(三) Java详解

最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。

具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。

边<E,F>的权值最小,因此将它加入到最小生成树结果R中。

第2步:将边<C,D>加入R中。

上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。

第3步:将边<D,E>加入R中。

上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。

第4步:将边<B,F>加入R中。

上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。

第5步:将边<E,G>加入R中。

上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。

第6步:将边<A,B>加入R中。

上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/

时间: 2024-11-01 04:23:08

Kruskal算法(三) Java详解的相关文章

Dijkstra算法(三) Java详解

迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中

Floyd算法(三) Java详解

弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,则需要对矩阵S进行N次更新.初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点

Prim算法(三) Java详解

普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,来对普里姆进

邻接矩阵有向图(三) Java详解

邻接矩阵有向图的介绍 邻接矩阵有向图是指通过邻接矩阵表示的有向图. 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边.   上图右边的矩阵是G2在内存中的邻接矩阵示意图.A[i][j]=1表示第i个顶点到第j个顶点是一条边

邻接矩阵无向图(三) Java详解

邻接矩阵无向图的介绍 邻接矩阵无向图是指通过邻接矩阵表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边.由于这是无向图,所以边(A,C)和边(C,A)是同一条边:这里列举边时,是按照字母先后顺序列举的. 上图右边的矩阵是G1在内存中的邻接矩阵示意图.A[i][j]=1表示第i个顶点与第j个顶点是邻接点,A[i][j]=0则表示它们不是邻接

邻接表无向图(三) Java详解

邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边. 上图右边的矩阵是G1在内存中的邻接表示意图.每一个顶点都包含一条链表,该链表记录了"该顶点的邻接点的序号".例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是"0,1,3":而这"

邻接表有向图(三) Java详解

邻接表有向图的介绍 邻接表有向图是指通过邻接表表示的有向图. 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边. 上图右边的矩阵是G2在内存中的邻接表示意图.每一个顶点都包含一条链表,该链表记录了"该顶点所对应的

Kruskal算法(二) C++详解

最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树. 克鲁斯卡尔算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回

拓扑排序(三) Java详解

拓扑排序介绍 拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列. 这样说,可能理解起来比较抽象.下面通过简单的例子进行说明! 例如,一个项目包括A.B.C.D四个子部分来完成,并且A依赖于B和D,C依赖于D.现在要制定一个计划,写出A.B.C.D的执行顺序.这时,就可以利用到拓扑排序,它就是用来确定事物发生的顺序的. 在拓扑排序中,如果存在一条从顶点A到顶点B的路径,那么在排序结果中B