SPDY、HTTP/2、QUIC协议

1 SPDY协议

1.1 概述

SPDY为speedy(单词原意:快速的)的缩写,读音也就是speedy。

SPDY协议已发布过4个草案,分别为版本1、2、33.1。目前版本4已在试验阶段,但未发布,Chromium里已有一些针对版本4的代码。

SPDY对比HTTP的优势

  1. 复用连接,可在一个TCP连接上传送多个资源。应对了TCP慢启动的特性。
  2. 请求分优先级,重要的资源优先传送。
  3. HTTP头部数据也被压缩,省流量。
  4. 服务器端可主动连接客户端来推送资源(Server Push)。

缺点:

  1. 单连接会因TCP线头阻塞(head-of-line blocking)的特性而传输速度受限。加上存在可能丢包的情况,其负面影响已超过压缩头部和优先级控制带来的好处。

由于这些缺点,SPDY在小网站(资源文件数量较少)的效果不明显,有可能比多并发连接更慢。(由此催生了QUIC)

1.2 协议层次

基于安全的考虑,SPDY规定建立在TLS之上,即URL scheme为https。发明者表示TLS的握手是在一定程度上占用了时间和流量,但网络安全是必然的趋势,所以不计较这一成本。协议层次如下:

   SPDY  ←  HTTP
    ↓
   TLS   ←  NPN
    ↓
   TCP

对比普通的HTTPS协议层次:

    HTTP
     ↓
  SSL/TLS
     ↓
    TCP

SPDY协议虽然在TLS基础上代替了HTTP协议,但SPDY的内容又包含了HTTP协议的内容,用设计模式来理解就是应用装饰者模式扩展了HTTP。

另外为了在TLS之上不使用标准规定的HTTP协议,为TLS扩展出NPN(Next Protocol Negotiation,协议协商)

1.3 NPN

NPN简单来说就是在TLS的握手阶段增加一些字段来表明服务器端和客户端希望在TLS基础上使用HTTP之外的(SPDY)协议。NPN同样是Google提出的,为SPDY铺路。

Client端程序的实现是:握手前对OpenSSL(或封装它的库)设置可接受哪些协议,握手后获取服务器选择了哪个协议,然后按选择的协议进行通信。

1.4 数据格式

本节不会完整介绍SPDY,只讲重点,并假定读者熟悉HTTP协议而不解释SPDY中类似HTTP的概念。

SPDY把一次单向传输(服务器到客户端或客户端到服务器)的内容称作帧(frame),按协议组装帧内容称为装帧(framing)。帧内容分为头部(header)和载荷(payload),类似于HTTP的头部(header)和实体(entity),但有以下区别:

  1. SPDY的头部都是8个字节,根据其中一些位的数值不同来表示不同的信息,并把HTTP的头部放到SPDY的载荷里。
  2. HTTP的实体(除POST信息外)是文件数据(data),SPDY的载荷除了可以是文件数据还可以是其它信息。

根据载荷的内容,帧分为控制帧和数据帧。

控制帧的数据格式:

+----------------------------------+
|C| Version(15bits) | Type(16bits) |
+----------------------------------+
| Flags (8)  |  Length (24 bits)   |
+----------------------------------+
|               Data               |
+----------------------------------+

数据帧的数据格式:

+----------------------------------+
|C|       Stream-ID (31bits)       |
+----------------------------------+
| Flags (8)  |  Length (24 bits)   |
+----------------------------------+
|               Data               |
+----------------------------------+

各数据位的意义:

  • C是第一个bit,值为0或1分别表示数据帧和控制帧。
  • Version为SPDY协议版本号,目前为3。
  • Type用作区分控制帧的类型。
  • Flags标记一些操作指示,不同的Type有不同的Flag。常见的是FLAG_FIN表示一个Stream结束。
  • Length表示Data的数据长度。
  • Data也就是payload。数据帧的Data就是一个文件(HTML文档、图片、脚本等),控制帧的Data根据Type不同而有不同。
  • Stream-ID记录流水号。

SPDY把一次HTTP Request/Response来回称作流(Stream),因为复用TCP连接,所以一个SPDY连接里会有多个流。为了区分不同的流,用Stream-ID来标记流水号(注:因为可以reload,所以不能以URL来确定一个流)。Stream-ID还存在于4种控制帧(SYN_STREAM、SYN_REPLY、RST_STREAM、HEADERS)的payload里。

控制帧的8种类型及作用:

  1. SYN_STREAM:创建流,在payload里携带请求(Request)。
  2. SYN_REPLY:回复创建流,在payload里携带HTTP头部。注意:SPDY把HTTP response拆开,response header放在控制帧SYN_REPLY的payload里并经过压缩,response entity放在数据帧里。
  3. RST_STREAM:报告流错误,payload里携带错误类型。
  4. SETTINGS:查询或设置控制信息。可处理的信息有8种:上传带宽、下载带宽、Round Trip时间、最大并行流数量、TCP的CWND值、下载重传率、初始窗口(Window)值、证书数量。
  5. PING:一种机制来测量Round Trip时间。
  6. GOAWAY:通知即将断开TCP连接。
  7. HEADERS:可做补充SVN_REPLY中的response header,或传递私有信息,特定的应用可用做自定义的扩展。
  8. WINDOW_UPDATE:设置窗口大小。

下图为帧格式的整理参考(需对照协议文档来理解具体意义,可跳过,点击查看大图):

1.5 流程

普通流程如下图:

Server Push的server端流程:回复client端的SYN_STREAM之后,再在server端发起SYN_STREAM,并在payload中用字段Associated_To_Stream_ID表示这个推送与哪个stream关联。

2 HTTP/2

2.1 概述

HTTP/2准第11版草案于2014年3月17日更新在http://http2.github.io/http2-spec/

HTTP/2由标准化组织来制定,是基于SPDY的,差别是:

  1. 增加了HTTP/1.1 Upgrade的机制,可在TCP上直接使用HTTP/2,不像SPDY那样必须在TLS上。
  2. HTTPS连接时使用NPN的规范版ALPN(Applcation Layer Protocol Negociation)。
  3. 更完善的协议商讨和确认流程。
  4. 更完善的Server Push流程。
  5. 增加控制帧的种类,并对帧格式考虑得更细致。
  6. 有新算法HPACK专门压缩SPDY header block。

HTTP/2文档带有一些示例和详细说明,这是SPDY没有的。

Chromium最新代码和Google网站已支持HTTP2-10(HTTP/2第10版草案)。

2.2 ALPN

ALPN第5版草案于2014年3月3日发布在http://tools.ietf.org/html/draft-ietf-tls-applayerprotoneg-05。 它是基于NPN的,并做了流程优化,但原则没变,就是在TLS握手过程增加一种协商协议的手段。标准流程为:

   Client                                              Server

   ClientHello                     -------->       ServerHello
     (ALPN extension &                               (ALPN extension &
      list of protocols)                              selected protocol)
                                                   Certificate*
                                                   ServerKeyExchange*
                                                   CertificateRequest*
                                   <--------       serverhellodone
certificate*
clientkeyexchange*
certificateverify*
[changecipherspec]
finished                           -------->
                                                   [ChangeCipherSpec]
                                   <--------       Finished
   Application Data                <------->       Application Data

目前Chromium的PC发布版已经在使用ALPN,不用NPN了。

2.3 TCP上的应用

HTTP/2可使用http或https scheme作为URL。

当使用http scheme时,client先用HTTP/1.1的request发给server,但要加入header Upgrade和HTTP2-Settings。格式为:

GET /default.htm HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: h2c
HTTP2-Settings: <base64url encoding of HTTP/2 SETTINGS payload>

如果server支持HTTP/2,则以状态码101回复,形式如下:

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2

[ HTTP/2 connection ...

然后双方开始以HTTP/2作为传输协议。否则以HTTP/1.1回复response,即HTTP/1.1 200 OK。

3 QUIC

QUIC是Quick UDP Internet Connections的缩写,读作quick。由Google开发,概要设计文档放在google docs https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit,还在不断更新。传输格式的详细设计文档放在https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/edit

概要设计文档从TCP/UDP特性、网络安全等考虑出发,做了非常多设计思路方面的论述,开头就阐述了SPDY的4个缺点:

  1. 单个包(packet)丢失会阻塞整个流(stream)。
  2. TCP避免拥堵的机制做的不好,导致带宽降低和序列化的等待时间开销。
  3. TLS会话重连的等待时间开销。握手机制带来额外的Round Trip。
  4. TLS解密的开销。先到的包必须等后面的包到来才能解密。

可以认为QUIC是为了解决SPDY在TCP遇到的瓶颈而在UDP上做探索所设计的方案。参考SPDY来理解,可认为QUIC的传输内容分两层,高层类似SPDY,低层是在UDP上模仿实现TCP的面向连接特性和可靠性并加入类似TLS的加密过程。

QUIC的文档还算未完成的状态,且Chromium的实现代码也在完善中,这还是个试验性的半成品,没有性能比较的数据。只浅浅研究即止,不深入了。

转载请注明出处:http://blog.csdn.net/hursing

4 研究与调查

4.1 SPDY服务器搭建

4.1.1 Apache

具体的搭建方法请参考《Linux Mint + Apache2.2搭建SSL/HTTPS/SPDY服务器》

环境配置为Linux + Apache2.2 + mod_spdy。其中mod_spdy是Chromium为Apache开发的插件,只支持Apache2.2,直接安装插件包即可。SPDY协议支持版本为3。

4.1.2 Nginx

具体的搭建方法请参考《Linux Mint + Nginx 1.5.11搭建SSL/HTTPS/SPDY服务器》

环境配置为Linux + Nginx1.5.11,需要编译源码来启用SPDY,普通发布包并不支持。SPDY协议支持版本为3.1,还不支持Server Push。

4.1.3 份额

根据新闻网页http://www.csdn.net/article/2013-07-04/2816099-nginx-just-became-the-most-used-web-server表示,在全球排名前1000的高流量网站所使用的Web服务器中,Nginx占34.9%,Apache占34.5%。两者分别排名第一和第二,第三的Microsoft-IIS并不支持SPDY。

4.2 Wireshark截包

Chromium为Wireshark1.7.1做了源码patch,名为spdyshark,需要下载Wireshark源码和spdyshark源码共同编译才能令Wireshark支持SPDY协议。具体的编译安装方法请参考《Linux Mint下编译安装支持SPDY协议的Wireshark》

因为SPDY基于TLS,所以Wireshark截包需要先解密SSL,再解析SPDY协议。具体的截包方法请参考《Wireshark+Apache2.4解密SSLv3》《使用支持SPDY协议的Wireshark截包(含spdyshark插件)》

4.3 Server端应用现状

4.3.1 调查方法

调查Web服务器是否支持SPDY,可使用第三方网站的方法:访问http://spdycheck.org/,在网页中输入网址即可反馈结果。例如:

但是国内网站并非全站都用HTTPS scheme,所以需要人工找到登录账号的页面来做测试。

还可使用Wireshark截包,在TLS的Server Hello信息中找Extension,ALPN会显示Unknown 16,NPN能识别出是Extension: next_protocol_negotiation。

可知目前Google网站用3.1:

Facebook用2和3:

4.3.2 调查结果

国内外的常见网站看了看,只发现四家:Google、Facebook、wordpress.comwww.cloudflare.com。国内还没有网站支持。(注,此调查结果很粗浅,不可当权威结论)

4.4 Browser端应用现状

4.4.1 测试方法

用目标浏览器访问https://isspdyenabled.com/即会在页面上显示是否支持SPDY。

4.4.2 数据

根据第三方数据,支持SPDY的浏览器有:

  1. Internet Explorer 11 部分支持
  2. Firefox 13+
  3. Chrome 4+
  4. Opera 12.1+
  5. Android系统浏览器3.0+(应该是错的,测试的结果是4.1+才对)
  6. Opera Mobile 12.1+
  7. Chrome for Android 33+
  8. Firefox for Android 26+

支持SPDY的浏览器占65.26%。具体请参看http://caniuse.com/spdy

搜索到CNZZ统计了中国的浏览器份额,但无法直观地看出支持SPDY的占比,个人估算是桌面版低于50%,移动版低于30%。http://brow.data.cnzz.com/main.php?s=brow&uv=1&type=2&date=2014%E5%B9%B402%E6%9C%88

5 浏览器实现方案

SPDY对浏览器的实现来说,工作在加载框架的网络层。假如已实现SPDY,下图描述网络层内部再分层细化以及各细化层的职责:

无论是HTTP还是SPDY,在一次加载流程中都需要各细化层承担所有的职责。在代码实现来看,若HTTP和SPDY有不同,则需要对各职责设计基类,HTTP和SPDY各自继承基类以实现不同的过程。

SPDY特殊实现的职责有:

  1. Callback回调机制。SPDY的HTTP header是压缩的,要与普通HTTP流程对接的话,要么先行解压,要么由callback解压。
  2. Protocol Transport协议传输过程控制。特别是Server Push特性。
  3. error错误处理
  4. SPDY全双工。SPDY的socket是全双工应用,同时发送和接收,和一般的HTTP先发送后接收不同。
  5. Framing装帧。这层大部分都和HTTP不同。
  6. SSL/TLS handshake握手过程。因为SPDY有NPN。
  7. SpdyConnection。Connection一般由URL的scheme、host、port来区分,SPDY和HTTPS的这些区分点全都相同,故connection的复用需增加protocol来区分。

除了Chromium自己外,其SPDY文档还列出了几种实现。C/C++的其它实现,都有个共同点:因为工作在底层,依赖比较多的外部库代码。而且他们最近三个月都还有更新,多数并未支持所有的SPDY特性,并且在修复bug。所以代码的完善程度还不能达到浏览器级别的标准。

6 网站是否该支持SPDY

暂无必要支持SPDY、HTTP/2和QUIC

原因:

  1. SPDY是公司标准,还不是行业标准,存在缺陷,待完善。
  2. SPDY成熟的时候就会被接纳并完善成为行业标准甚至国际标准,那时候再支持也不迟。HTTP/2草案就是基于SPDY的,且HTTP/2优于SPDY,SPDY迟早会退出历史舞台,届时业界会大量支持HTTP/2。
  3. Server端本身对SPDY的支持不完善,未完全实现所有特性,且存在bug。网站贸然使用的话存在一定风险。Apache2.2 + mod_spdy只支持SPDY3,Nginx1.5.1只支持SPDY3.1,未实现Server Push。等到Server端程序较完善的时候再做也不迟。收费的Server端程序没有一个开始支持SPDY,等到他们开始支持的时候,可认为是一个标志,代表业界会开始做很多配套的东西来支持新标准。
  4. Server端并未普及,已应用的网站寥寥无几。
  5. 支持SPDY的浏览器在中国的份额低于50%,网站还没迫切必要支持SPDY。Safari完全不支持,即SPDY还未获Apple认可。

转载请注明出处:http://blog.csdn.net/hursing

时间: 2024-10-26 19:23:33

SPDY、HTTP/2、QUIC协议的相关文章

Google QUIC 协议:从 TCP 到 UDP 的 Web 平台

QUIC(Quick UDP Internet Connections)协议是一种全新的基于UDP的web开发协议. 从TCP协议说起 当前,web平台的数据传输都基于TCP协议.TCP协议在创建连接之前需要进行三次握手(图1),如果需要提高数据交互的安全性,既增加传输层安全协议(TLS),还会增加更多的握手次数(图2). 图1,TCP三次握手示意(来源 Next generation multiplexed transport over UDP (PDF)) https://yqfile.al

谷歌Chrome浏览器添加QUIC协议

Google今天将一个实验中的新协议--快速UDP网络连接(QUIC)--加入到了最新版的Chrome Canary中.该协议包含了一系列新特点,但其重点是能够在UDP上运行一个流复用协议,而不是TCP.Google表示,在过去的几个月里,该公司已经在QUIC客户端和原型服务器上部署并工作过.不过该公司也得到了一些经验,因为"真实世界的网络条件,往往差别很大".      正因为如此,Google才在比较小众的canary版和dev通道的Chrome浏览器里测试这个有赞有弹的QUIC设

从输入 URL 到页面加载完成的过程中都发生了什么事情?

wuduoyi.com 背景 本文来自于之前我发的一篇微博: 不过写这篇文章并不是为了帮大家准备面试,而是想借这道题来介绍计算机和互联网的基础知识,让读者了解它们之间是如何关联起来的. 为了便于理解,我将整个过程分为了六个问题来展开. 第一个问题:从输入 URL 到浏览器接收的过程中发生了什么事情? 从触屏到 CPU 首先是「输入 URL」,大部分人的第一反应会是键盘,不过为了与时俱进,这里将介绍触摸屏设备的交互. 触摸屏一种传感器,目前大多是基于电容(Capacitive)来实现的,以前都是直

手机淘宝移动端接入网关基础架构演进之路

移动网络优化是超级App永恒的话题,对于无线电商来说更为重要,网络请求体验跟用户的购买行为息息相关,手机淘宝从过去的HTTP API网关,到2014年升级支持SPDY,2015年双十一自研高性能.全双工.安全的ACCS(阿里云通道服务)扛住双十一战场主要流量,无论是基础架构的演进.网络调优.协议的优化.异地多活.网络调度上都有不少宝贵的经验与大家分享. ACCS基于无线场景精心设计的双工 .安全.低时延.开放的移动统一接入层服务,在双十一当天稳定高效地服务了近2亿的在线用户,支持了峰值4500万

为什么 UDP 有时比 TCP 更有优势

为什么 UDP 有时比 TCP 更有优势 随着网络技术飞速发展,网速已不再是传输的瓶颈,UDP协议以其简单.传输快的优势,在越来越多场景下取代了TCP,如网页浏览.流媒体.实时游戏.物联网. 1,网速的提升给UDP稳定性提供可靠网络保障 CDN服务商Akamai报告从2008年到2015年7年时间,各个国家网络平均速率由1.5Mbps提升为5.1Mbps,网速提升近4倍.网络环境变好,网络传输的延迟.稳定性也随之改善,UDP的丢包率低于5%,如果再使用应用层重传,能够完全确保传输的可靠性. 2,

企业级移动应用如何优化域名解析和业务访问?

2016云栖大会之前,阿里云关于移动服务方面的介绍比较少,为什么现在开始在做移动服务方面的介绍? 从2013年开始,阿里巴巴举全集团之力解决无线APP开发过程中的一些难题,经过三年多的积累,把阿里集团积累的一些技术逐渐输出出来,成为阿里云的产品.2016云栖大会武汉峰会上,阿里巴巴无线产品经理德泰把之前阿里云做的努力和成果跟参会嘉宾一起分享.移动应用解决方案这个话题比较大,可以分成一个系列来讲,今天偏重从性能方面来讲述阿里这方面做的努力. 移动域名解析存在哪些问题,如何优化?使用什么协议?业务访

【原创】现代 Web 进化史

本文翻译自[The modern Web],喜欢看原文的朋友,可以移步. ===== 我是刚过了母亲节的分隔线 ===== 让我们回顾一下从 Web 技术的创始之初到今天都经历了哪些技术,并对将会出现并使用的技术进行预览.Cowboy 兼容于本章节中提及的所有技术,当然尚不包含 HTTP/2.0 ,因为在书写本文时世界上尚未有相应的实现. 史前 Web       HTTP 最初被创建用于支持 HTML 页面的获取,且最初仅包含 GET 方法用于获取内容.该初始版本有文档记录,并在业界称为 HT

漫游 HTTP/2

HTTP 是什么 首先我们要明白 HTTP 是什么.HTTP 是一个基于 TCP/IP 的应用层通信协议,它是客户端和服务端在互联网互相通讯的标准.它定义了内容是如何通过互联网进行请求和传输的.HTTP 是在应用层中抽象出的一个标准,使得主机(客户端和服务端)之间的通信得以通过 TCP/IP 来进行请求和响应.TCP 默认使用的端口是80,当然也可以使用其它端口,比如 HTTPS 使用的就是 443 端口. HTTP/0.9 - 单行协议 (1991) HTTP 最早的规范可以追溯到 1991

这是网络安全的基石:密码学2016大盘点

2015年是密码学应用标志性的一年,2016年或许没有那么绚丽夺目,但全世界的研究人员仍在继续精进密码技术. TLS 1.3 设计完成 2016年密码学最大的实践发展,就是安全传输层协议(TSL) 1.3 版.TLS是应用广泛的重要加密协议,也是安全互联网通信的基础.在数百位研究人员和工程师长达数年的钻研之后,新的TLS设计从密码学的角度看终于可被认为是完工了.该协议如今支持Firefox.Chrome和Opera.虽然看起来像是个小版本升级,TLS 1.3 却是 TLS 1.2 的重大再设计(