一、什么是Flume?
flume 作为 cloudera 开发的实时日志收集系统受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OGoriginal generation属于 cloudera。但随着 FLume 功能的扩展Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来尤其是在 Flume OG 的最后一个发行版本 0.94.0 中日志传输不稳定的现象尤为严重为了解决这些问题2011 年 10 月 22 号cloudera 完成了 Flume-728对 Flume 进行了里程碑式的改动重构核心组件、核心配置以及代码架构重构后的版本统称为 Flume NGnext generation改动的另一原因是将 Flume 纳入 apache 旗下cloudera Flume 改名为 Apache Flume。
flume的特点
flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方用于收集数据;同时Flume提供对数据进行简单处理并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位它携带日志数据(字节数组形式)并且携带有头信息这些Event由Agent外部的Source生成当Source捕获事件后会进行特定的格式化然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
flume的可靠性
当节点出现故障时日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障从强到弱依次分别为end-to-end收到数据agent首先将event写到磁盘上当数据传送成功后再删除如果数据发送失败可以重新发送。Store on failure这也是scribe采用的策略当数据接收方crash时将数据写到本地待恢复后继续发送Besteffort数据发送到接收方后不会进行确认。
flume的可恢复性
还是靠Channel。推荐使用FileChannel事件持久化在本地文件系统里(性能较差)。
flume的一些核心概念
Agent使用JVM 运行Flume。每台机器运行一个agent但是可以在一个agent中包含多个sources和sinks。
Client生产数据运行在一个独立的线程。
Source从Client收集数据传递给Channel。
Sink从Channel收集数据运行在一个独立线程。
Channel连接 sources 和 sinks 这个有点像一个队列。
Events可以是日志记录、 avro 对象等。
Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成如下图
值得注意的是Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件非常灵活。比如Channel可以把事件暂存在内存里也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase甚至是另外一个Source等等。Flume支持用户建立多级流也就是说多个agent可以协同工作并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes这也正是NB之处。如下图所示:
二、flume的官方网站在哪里
http://flume.apache.org/
三、在哪里下载
http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz
四、如何安装
1)将下载的flume包解压到/home/hadoop目录中你就已经完成了50%简单吧
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置
root@m1:/home/hadoop/flume-1.5.0-bin# cp conf/flume-env.sh.template conf/flume-env.sh root@m1:/home/hadoop/flume-1.5.0-bin# vi conf/flume-env.sh # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced # during Flume startup. # Enviroment variables can be set here. JAVA_HOME=/usr/lib/jvm/java-7-oracle # Give Flume more memory and pre-allocate, enable remote monitoring via JMX #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote" # Note that the Flume conf directory is always included in the classpath. #FLUME_CLASSPATH=""
3)验证是否安装成功
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version Flume 1.5.0 Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97 Compiled by hshreedharan on Wed May 7 14:49:18 PDT 2014 From source with checksum a01fe726e4380ba0c9f7a7d222db961f root@m1:/home/hadoop#
出现上面的信息表示安装成功了
五、flume的案例
1)案例1Avro
Avro可以发送一个给定的文件给FlumeAvro 源使用AVRO RPC机制。
a)创建agent配置文件
root@m1:/home/hadoop#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 4141 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
c)创建指定文件
root@m1:/home/hadoop# echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00
d)使用avro-client发送文件
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00
f)在m1的控制台可以看到以下信息注意最后一行
root@m1:/home/hadoop/flume-1.5.0-bin/conf# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console Info: Sourcing environment configuration script /home/hadoop/flume-1.5.0-bin/conf/flume-env.sh Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.2.0/bin/hadoop) for HDFS access Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath ... -08-10 10:43:25,112 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND -08-10 10:43:25,112 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED -08-10 10:43:25,112 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected. -08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64 hello world }
2)案例2Spool
Spool监测配置的目录下新增的文件并将文件中的数据读取出来。需要注意两点
1) 拷贝到spool目录下的文件不可以再打开编辑。
2) spool目录下不可包含相应的子目录
a)创建agent配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = spooldir a1.sources.r1.channels = c1 a1.sources.r1.spoolDir = /home/hadoop/flume-1.5.0-bin/logs a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console
c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录
root@m1:/home/hadoop# echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log
d)在m1的控制台可以看到以下相关信息
/08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file /home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.COMPLETED /08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:14 INFO sink.LoggerSink: Event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31 spool test1 } /08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:17 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
3)案例3Exec
EXEC执行一个给定的命令获得输出的源,如果要使用tail命令必选使得file足够大才能看到输出内容
a)创建agent配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.channels = c1 a1.sources.r1.command = tail -F /home/hadoop/flume-1.5.0-bin/log_exec_tail # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console
c)生成足够多的内容在文件里
root@m1:/home/hadoop# for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done
e)在m1的控制台可以看到以下信息
-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74 exec tail test } -08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74 exec tail test } -08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 exec tail1 } -08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32 exec tail2 } -08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33 exec tail3 } -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34 exec tail4 } -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35 exec tail5 } -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36 exec tail6 } .... .... .... -08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36 exec tail96 } -08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37 exec tail97 } -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38 exec tail98 } -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39 exec tail99 } -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30 exec tail100 }
4)案例4Syslogtcp
Syslogtcp监听TCP的端口做为数据源
a)创建agent配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console
c)测试产生syslog
root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140
d)在m1的控制台可以看到以下信息
/08/10 11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf /08/10 11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1 /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1 /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1 /08/10 11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [a1] /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Creating channels /08/10 11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type memory /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1 /08/10 11:41:45 INFO source.DefaultSourceFactory: Creating instance of source r1, type syslogtcp /08/10 11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type: logger /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1] /08/10 11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} } /08/10 11:41:45 INFO node.Application: Starting Channel c1 /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 11:41:45 INFO node.Application: Starting Sink k1 /08/10 11:41:45 INFO node.Application: Starting Source r1 /08/10 11:41:45 INFO source.SyslogTcpSource: Syslog TCP Source starting... /08/10 11:42:15 WARN source.SyslogUtils: Event created from Invalid Syslog data. /08/10 11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
5)案例5JSONHandler
a)创建agent配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = org.apache.flume.source.http.HTTPSource a1.sources.r1.port = 8888 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console
c)生成JSON 格式的POST request
root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888
d)在m1的控制台可以看到以下信息
/
08/10 11:49:59 INFO node.Application: Starting Channel c1 /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 11:49:59 INFO node.Application: Starting Sink k1 /08/10 11:49:59 INFO node.Application: Starting Source r1 /08/10 11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog /08/10 11:49:59 INFO mortbay.log: jetty-6.1.26 /08/10 11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888 /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started /08/10 12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79 idoall.org_body }
6)案例6Hadoop sink
其中关于hadoop2.2.0部分的安装部署请参考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》
a)创建agent配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = hdfs a1.sinks.k1.channel = c1 a1.sinks.k1.hdfs.path = hdfs://m1:9000/user/flume/syslogtcp a1.sinks.k1.hdfs.filePrefix = Syslog a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console
c)测试产生syslog
root@m1:/home/hadoop# echo "hello idoall flume -> hadoop testing one" | nc localhost 5140
d)在m1的控制台可以看到以下信息
/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 12:20:39 INFO node.Application: Starting Sink k1 /08/10 12:20:39 INFO node.Application: Starting Source r1 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SINK, name: k1: Successfully registered new MBean. /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started /08/10 12:20:39 INFO source.SyslogTcpSource: Syslog TCP Source starting... /08/10 12:21:46 WARN source.SyslogUtils: Event created from Invalid Syslog data. /08/10 12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false /08/10 12:21:49 INFO hdfs.BucketWriter: Creating hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp /08/10 12:22:20 INFO hdfs.BucketWriter: Closing hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp /08/10 12:22:20 INFO hdfs.BucketWriter: Close tries incremented /08/10 12:22:20 INFO hdfs.BucketWriter: Renaming hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504 /08/10 12:22:20 INFO hdfs.HDFSEventSink: Writer callback called.
e)在m1上再打开一个窗口去hadoop上检查文件是否生成
root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp Found 1 items -rw-r--r-- 3 root supergroup 155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog.1407644509504 root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504 SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one
7)案例7File Roll Sink
a)创建agent配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5555 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = file_roll a1.sinks.k1.sink.directory = /home/hadoop/flume-1.5.0-bin/logs # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console
c)测试产生log
root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5555 root@m1:/home/hadoop# echo "hello idoall.org syslog 2" | nc localhost 5555
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs 总用量 272 drwxr-xr-x 3 root root 4096 Aug 10 12:50 ./ drwxr-xr-x 9 root root 4096 Aug 10 10:59 ../ -rw-r--r-- 1 root root 50 Aug 10 12:49 1407646164782-1 -rw-r--r-- 1 root root 0 Aug 10 12:49 1407646164782-2 -rw-r--r-- 1 root root 0 Aug 10 12:50 1407646164782-3 root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2 hello idoall.org syslog hello idoall.org syslog 2
8)案例8Replicating Channel Selector
Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out分别是复制和复用。在复制的情况下流的事件被发送到所有的配置通道。在复用的情况下事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
这次我们需要用到m1,m2两台机器
a)在m1创建replicating_Channel_Selector配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.type = replicating # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type = avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
b)在m1创建replicating_Channel_Selector_avro配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)在m1上将2个配置文件复制到m2上一份
root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br>
d)打开4个窗口在m1和m2上同时启动两个flume agent
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一台机器上测试产生syslog
root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140
f)在m1和m2的sink窗口分别可以看到以下信息,这说明信息得到了同步
/08/10 14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected. /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873 /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858 /08/10 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
9)案例9Multiplexing Channel Selector
a)在m1创建Multiplexing_Channel_Selector配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1.type = org.apache.flume.source.http.HTTPSource a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.type = multiplexing a1.sources.r1.selector.header = type #映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。 a1.sources.r1.selector.mapping.baidu = c1 a1.sources.r1.selector.mapping.ali = c2 a1.sources.r1.selector.default = c1 # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type = avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
b)在m1创建Multiplexing_Channel_Selector_avro配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)将2个配置文件复制到m2上一份
root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
d)打开4个窗口在m1和m2上同时启动两个flume agent
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一台机器上测试产生syslog
root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140
f)在m1的sink窗口可以看到以下信息
14/08/10 14:32:21 INFO node.Application: Starting Sink k1 14/08/10 14:32:21 INFO node.Application: Starting Source r1 14/08/10 14:32:21 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 14:32:21 INFO source.AvroSource: Avro source r1 started. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945 14/08/10 14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31 idoall_TEST1 } 14/08/10 14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33 idoall_TEST3 }
g)在m2的sink窗口可以看到以下信息
14/08/10 14:32:27 INFO node.Application: Starting Sink k1 14/08/10 14:32:27 INFO node.Application: Starting Source r1 14/08/10 14:32:27 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 14:32:27 INFO source.AvroSource: Avro source r1 started. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599 14/08/10 14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32 idoall_TEST2 }
可以看到根据header中不同的条件分布到不同的channel上
10)案例10Flume Sink Processors
failover的机器是一直发送给其中一个sink当这个sink不可用的时候自动发送到下一个sink。
a)在m1创建Flume_Sink_Processors配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 #这个是配置failover的关键需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 #处理的类型是failover a1.sinkgroups.g1.processor.type = failover #优先级数字越大优先级越高每个sink的优先级必须不相同 a1.sinkgroups.g1.processor.priority.k1 = 5 a1.sinkgroups.g1.processor.priority.k2 = 10 #设置为10秒当然可以根据你的实际状况更改成更快或者很慢 a1.sinkgroups.g1.processor.maxpenalty = 10000 # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.type = replicating # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type = avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
b)在m1创建Flume_Sink_Processors_avro配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)将2个配置文件复制到m2上一份
root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
d)打开4个窗口在m1和m2上同时启动两个flume agent
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一台机器上测试产生log
root@m1:/home/hadoop# echo "idoall.org test1 failover" | nc localhost 5140
f)因为m2的优先级高所以在m2的sink窗口可以看到以下信息而m1没有
14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704 14/08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
g)这时我们停止掉m2机器上的sink(ctrl+c)再次输出测试数据
root@m1:/home/hadoop# echo "idoall.org test2 failover" | nc localhost 5140
h)可以在m1的sink窗口看到读取到了刚才发送的两条测试数据
14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
i)我们再在m2的sink窗口中启动sink
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
j)输入两批测试数据
root@m1:/home/hadoop# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
k)在m2的sink窗口我们可以看到以下信息因为优先级的关系log消息会再次落到m2上
14/08/10 15:09:47 INFO node.Application: Starting Sink k1 14/08/10 15:09:47 INFO node.Application: Starting Source r1 14/08/10 15:09:47 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 15:09:47 INFO source.AvroSource: Avro source r1 started. 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741 14/08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
11)案例11Load balancing Sink Processor
load balance type和failover不同的地方是load balance有两个配置一个是轮询一个是随机。两种情况下如果被选择的sink不可用就会自动尝试发送到下一个可用的sink上面。
a)在m1创建Load_balancing_Sink_Processors配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 #这个是配置Load balancing的关键需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 a1.sinkgroups.g1.processor.type = load_balance a1.sinkgroups.g1.processor.backoff = true a1.sinkgroups.g1.processor.selector = round_robin # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type = avro a1.sinks.k2.channel = c1 a1.sinks.k2.hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100
b)在m1创建Load_balancing_Sink_Processors_avro配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)将2个配置文件复制到m2上一份
root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
d)打开4个窗口在m1和m2上同时启动两个flume agent
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一台机器上测试产生log一行一行输入输入太快容易落到一台机器上
root@m1:/home/hadoop# echo "idoall.org test1" | nc localhost 5140 root@m1:/home/hadoop# echo "idoall.org test2" | nc localhost 5140 root@m1:/home/hadoop# echo "idoall.org test3" | nc localhost 5140 root@m1:/home/hadoop# echo "idoall.org test4" | nc localhost 5140
f)在m1的sink窗口可以看到以下信息
14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
g)在m2的sink窗口可以看到以下信息
14/08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
说明轮询模式起到了作用。
12)案例12Hbase sink
a)在测试之前请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动
b)然后将以下文件复制到flume中
cp /home/hadoop/hbase-0.96.2-hadoop2/lib/protobuf-java-2.5.0.jar /home/hadoop/flume-1.5.0-bin/lib cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-client-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-common-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-protocol-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-server-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop2-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib@@@ cp /home/hadoop/hbase-0.96.2-hadoop2/lib/htrace-core-2.04.jar /home/hadoop/flume-1.5.0-bin/lib
c)确保test_idoall_org表在hbase中已经存在test_idoall_org表的格式以及字段请参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。
d)在m1创建hbase_simple配置文件
root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type = logger a1.sinks.k1.type = hbase a1.sinks.k1.table = test_idoall_org a1.sinks.k1.columnFamily = name a1.sinks.k1.column = idoall a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer a1.sinks.k1.channel = memoryChannel # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
e)启动flume agent
/home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf -n a1 -Dflume.root.logger=INFO,console
f)测试产生syslog
root@m1:/home/hadoop# echo "hello idoall.org from flume" | nc localhost 5140
g)这时登录到hbase中可以发现新数据已经插入
root@m1:/home/hadoop# /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell 2014-08-10 16:09:48,984 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available HBase Shell; enter 'help<RETURN>' for list of supported commands. Type "exit<RETURN>" to leave the HBase Shell Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014 hbase(main):001:0> list TABLE SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/hadoop/hbase-0.96.2-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. hbase2hive_idoall hive2hbase_idoall test_idoall_org 3 row(s) in 2.6880 seconds => ["hbase2hive_idoall", "hive2hbase_idoall", "test_idoall_org"] hbase(main):002:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue 1 row(s) in 0.0550 seconds hbase(main):003:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue 1407658495588-XbQCOZrKK8-0 column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume 2 row(s) in 0.0200 seconds hbase(main):004:0> quit
经过这么多flume的例子测试如果你全部做完后会发现flume的功能真的很强大可以进行各种搭配来完成你想要的工作俗话说师傅领进门修行在个人如何能够结合你的产品业务将flume更好的应用起来快去动手实践吧。
这篇文章做为一个笔记希望能够对刚入门的同学起到帮助作用。
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索配置
, flume
环境部署
flume配置文件详解、flume windows部署、flume ng 配置详解、flume配置参数详解、flume安装部署,以便于您获取更多的相关知识。