equals和hashCode源码解析

equals和hashCode网上也有很多的资料。这里只是记录下我目前的理解与认识。 
大家会经常听到这样的话,当你重写equals方法时,尽量要重写hashCode方法,有些人却并不知道为什么要这样,待会就会给出源码说明这个原因。 

首先来介绍下Object的equals和hashCode方法。如下: 

?


1

2

3

4

public native int hashCode();

public boolean equals(Object obj) {

        return (this == obj);

    }

这里挺简单的,equals(obj)默认比较的是内存地址,hashCode()方法默认是native方法,看下它的文档说明: 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

/**

* 关注点1

     * Returns a hash code value for the object. This method is

     * supported for the benefit of hash tables such as those provided by

     * {@link java.util.HashMap}.

     * <p>

     * The general contract of {@code hashCode} is:

     * <ul>

     * <li>Whenever it is invoked on the same object more than once during

     *     an execution of a Java application, the {@code hashCode} method

     *     must consistently return the same integer, provided no information

     *     used in {@code equals} comparisons on the object is modified.

     *     This integer need not remain consistent from one execution of an

     *     application to another execution of the same application.

* 关注点2

     * <li>If two objects are equal according to the {@code equals(Object)}

     *     method, then calling the {@code hashCode} method on each of

     *     the two objects must produce the same integer result.

     * <li>It is <em>not</em> required that if two objects are unequal

     *     according to the {@link java.lang.Object#equals(java.lang.Object)}

     *     method, then calling the {@code hashCode} method on each of the

     *     two objects must produce distinct integer results.  However, the

     *     programmer should be aware that producing distinct integer results

     *     for unequal objects may improve the performance of hash tables.

     * </ul>

     * <p>

* 关注点3

     * As much as is reasonably practical, the hashCode method defined by

     * class {@code Object} does return distinct integers for distinct

     * objects. (This is typically implemented by converting the internal

     * address of the object into an integer, but this implementation

     * technique is not required by the

     * Java<font size="-2"><sup>TM</sup></font> programming language.)

     *

     * @return  a hash code value for this object.

     * @see     java.lang.Object#equals(java.lang.Object)

     * @see     java.lang.System#identityHashCode

     */

    public native int hashCode();

这里有三个关注点。 
关注点1:主要是说这个hashCode方法对哪些类是有用的,并不是任何情况下都要使用这个方法(此时是根本没有必要来复写此方法),而是当你涉及到像HashMap、HashSet(他们的内部实现中使用到了hashCode方法)等与hash有关的一些类时,才会使用到hashCode方法。 

关注点2:推荐按照这样的原则来设计,即当equals(object)相同时,hashCode()的返回值也要尽量相同,当equals(object)不相同时,hashCode()的返回没有特别的要求,但是也是尽量不相同以获取好的性能。 

关注点3:默认的hashCode实现一般是内存地址对应的数字,所以不同的对象,hashCode()的返回值是不一样的。 

java世界里的相同: 
如Person类,含有name和age属性: 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

public class Person {

 

    private String name;

    private int age;

     

    public String getName() {

        return name;

    }

    public void setName(String name) {

        this.name = name;

    }

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }

    @Override

    public boolean equals(Object obj) {

        if(!(obj instanceof Person)){

            return false;

        }

        Person tmp=(Person)obj;

        return name.equals(tmp.getName()) && age==tmp.getAge();

    }

 

}

我们认为当name和age值都相同时就是一个相同的person,所以我们可以重写equals方法如上所述,这样我们就可以调用perosn1.equals(person2)来判断他们是否相同。然而这样就完了吗?如果你不涉及其他有关hash方面的内容,这样的确可以满足你的需求了,也就是说这样做仅仅是针对部分情况是可以的,并没有针对全部情况,如若使用HashMap、HashSet等还想实现person1和person2相同,仅仅重写equals方法肯定是不够的,必须要重写hashCode方法。 

为什么会有Hash类型的Map? 
简单理解:Map本身是存放key和value信息的地方,若想获取某个key1对应的value,即map.get(key1),常规思维就是拿key1和所有的key一个一个去比较,若相同,则返回对应的value。假如有10000个key,要比较10000次吗?这样的效率难道不是很低下的吗?所以要改进,假如我们对key1进行某种运算直接能得到对应value的存储位置,来直接获取到value,这样不是最爽的吗?不再和其他key进行比较了,而是得到位置,直接获取对应的value。这就是HashMap等的基本原理,同时hashCode方法在得到位置信息上发挥着巨大的作用。 

接下来HashMap的源码分析这一具体过程: 

?


1

2

static final Entry<?,?>[] EMPTY_TABLE = {};

    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

HashMap内部是由Entry<K,V>类型的数组table来存储数据的。来看下Entry<K,V>的代码: 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

static class Entry<K,V> implements Map.Entry<K,V> {

        final K key;

        V value;

        Entry<K,V> next;

        int hash;

 

        /**

         * Creates new entry.

         */

        Entry(int h, K k, V v, Entry<K,V> n) {

            value = v;

            next = n;

            key = k;

            hash = h;

        }

        //略

}

Entry<K,V>有四个重要的属性,是一对key和value的结合,同时包含下一个Entry<K,V>,就像链表一样,最后一个就是哈希值h(这个哈希值就是key的hashCode方法的返回值经过hash运算得到的值)。 
所以我们可以画出HashMap的存储结构: 

 
图中的每一个方格就表示一个Entry<K,V>对象,其中的横向则构成一个Entry<K,V>[] table数组,而竖向则是由Entry<K,V>的next属性形成的链表。 
假入我们想找编号为2的value,如果我们能直接找到它所在数组中的索引便可以快速找到它,假如我们想找编号为73的value,如果我们能直接找到编号7然后再继续沿着链表寻找,便可以快速找到它。 

首先看下它HashMap是如何来添加的,即 put(K key, V value)方法: 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

public V put(K key, V value) {

        if (table == EMPTY_TABLE) {

            inflateTable(threshold);

        }

        if (key == null)

            return putForNullKey(value);

        int hash = hash(key);

        int i = indexFor(hash, table.length);

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {

            Object k;

            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

 

        modCount++;

        addEntry(hash, key, value, i);

        return null;

    }

现在先不管HashMap扩容的事情,我们重点关注它的存的过程,首先就是计算key的hash值,这个hash计算的过程便用到了key对象的hashCode方法,如下: 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

final int hash(Object k) {

        int h = hashSeed;

        if (0 != h && k instanceof String) {

            return sun.misc.Hashing.stringHash32((String) k);

        }

 

        h ^= k.hashCode();

 

        // This function ensures that hashCodes that differ only by

        // constant multiples at each bit position have a bounded

        // number of collisions (approximately 8 at default load factor).

        h ^= (h >>> 20) ^ (h >>> 12);

        return h ^ (h >>> 7) ^ (h >>> 4);

    }

先不用看懂这个方法是怎么计算的,它的内容就是对key的hashCode方法返回值进行一系列的运算得到一个最终的值,这个值就是hash值,就是上文所说的Entry<K,V>中的h属性的值。 
得到这个hash值后,紧接着执行了int i = indexFor(hash, table.length);就是找到这个hash值在table数组中的索引值,具体方法indexFor(hash, table.length)为: 

?


1

2

3

static int indexFor(int h, int length) {

        return h & (length-1);

    }

就是拿刚才生成的hash值和(table数组的长度减一)进行了相&操作,可以看到我们得到的hash值是一个很大很大的数字,和length-1相&之后的值,必然是在0到length-1之内,即在table数组的范围之内。得到的这个索引之后,接下来针对这个索引值对应的链表便进行放入或者替换操作。遍历这个链表,拿要放进来的key和这个链表上的每一对象的key进行下对比,看是否一致,若一致则进行替换操作,若都不一致则进行新的插入操作。 

判断是否一致的条件是:e.hash == hash && ((k = e.key) == key || key.equals(k)),一定要牢牢记住这个条件。 

必须满足的条件1:hash值一样,hash值的来历就是根据key的hashCode再进行一个复杂的运算,当两个key的hashCode一致的时候,计算出来的hash也是必然一样的。 

必须满足的条件2:两个key的引用一样或者equals相同。 

综上所述,HashMap对于key的重复性判断是基于两个内容的判断,一个就是hash值是否一样(会演变成key的hashCode是否一样),另一个就是equals方法是否一样(引用一样则肯定一样)。它依据的是两个条件,所以对于上文的Person类,若想在HashMap中以person对象作为key,要满足person1对象和person2对象一样,则我们必须要重写equals方法和hashCode方法。若没有重写hashCode方法,则使用系统默认的本地hashCode方法,不同的对象的hashCode是不一样的,所以HashMap在判断时就会认为person1和person2是不一样,造成了我们事与愿违的结果。 
HashMap为什么要多引入key的hash是否一致的判断条件呢?为什么不仅仅判断equals方法是否一样? 
我认为原因如下 

好处1:当这个table数组特别大的时候,如长度为10000,根据hash&length-1这个计算的索引值,便很快的定位某一个链表下,过滤了很大一批数据,不需要一个一个遍历。仅仅依靠equals是无法实现这样的快速过滤的。 

好处2:不同的hash值得出的索引位置很可能是一样的,所以在这个链表下仍要进一步判断,此时就需要一个一个进行遍历。Entry<K,V>对象中hash值是已经保存的数据,新的key的hash也已经计算出来,所以在遍历对比的过程中判断hash值是否一致是相当快的,如果不一致,则认为不相同继续下一个判断,就不会调用费时的equals方法。假如这个链表的数据也特别多,判断过程也是相当快的。也就是说,判断hash是否一致加快了在链表上的遍历的速度,减少了相对费时的equals调用次数。 

综上所述,为了实现HashMap的上述高效的存储操作,引入了hash这个重要的东西。同时带给我们的附加操作就是要满足key一致除了equals返回true外,还必须让hashCode一样。所以我们重写equals方法的时候尽量的重写hashCode方法,当用到HashMap或者HashSet等时必须要重写hashCode方法。 
hashCode的重写的原则:当equals方法返回true,则两个对象的hashCode必须一样。 
如String、Integer等类都重写了equals方法和hashCode方法,都是遵循上述原则。所以我们在重写hashCode时也要遵循上述原则。 

接下来看下get(Object key)源代码的具体寻找过程: 

?


1

2

3

4

5

6

7

public V get(Object key) {

        if (key == null)

            return getForNullKey();

        Entry<K,V> entry = getEntry(key);

 

        return null == entry ? null : entry.getValue();

    }

就是找到对应key的Entry<K,V>对象,有了这个对象我们便可以获取到value。继续看下是如何来找到key对应的Entry<K,V>对象的: 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

final Entry<K,V> getEntry(Object key) {

        if (size == 0) {

            return null;

        }

 

        int hash = (key == null) ? 0 : hash(key);

        for (Entry<K,V> e = table[indexFor(hash, table.length)];

             e != null;

             e = e.next) {

            Object k;

            if (e.hash == hash &&

                ((k = e.key) == key || (key != null && key.equals(k))))

                return e;

        }

        return null;

    }

看到这里就会明白了这个过程,和上面put的过程类似的。 

hash&length-1结果相同我们称为冲突 
同时要思考什么样的情况下,get(key)过程是最快的?当然是hash&length-1的结果所在的数组索引下只有一个对象,还没有其他对象插入进来。也就是当所有的数据均匀分布在table上,而不是集中在table某个索引对应的连表上的时候此时get操作的效率是相当高的,为了达到这一个操作,就是要满足hash&length-1要尽可能的不同,减少冲突。 

首先看length-1:它的原因是因为要限制在table数组内,同时还有一个重要的作用就是减少冲突。首先要知道length的长度是2的幂级数,这个是HashMap来保证的,下一篇文章再说HashMap的大小及扩容。假如length为7,3&(7-1) 即二进制的11&110等于10,2&(7-1),即二进制的10&110即10,这就是说2和3这两个值不一样,却造成了一样的索引值,即产生了冲突,当length=8时,11&111为11,10&111为10所以避免了冲突。所以当length-1的二进制为全1时,会起到避免冲突的作用。 

接着看hash值,hash值是由key的hashCode经过hash运算得到的,为了让hash&length-1的结果尽量不产生冲突,hash的值也要尽量均匀,这就对hash算法提出了很高的要求,一个好的hash算法,会让不同的hashCode计算出来的hash值更加均匀分布。hash算法不在本文的范围之内,感兴趣的可以去研究。 

接下来顺便看看HashSet的原理: 
Set与List相比是无序的,不允许元素重复。元素重复的依据和HashMap对key的要求是一样的。即所存元素的hash值一样并且equals相同才是一样的元素。看下代码: 

?


1

2

3

private transient HashMap<E,Object> map;

 

    private static final Object PRESENT = new Object();

看到了没有,HashSet内部是有一个HashMap的,这个key就是HashSet的元素,而value始终是一个固定的值PRESENT。 
看下HashSet的add方法: 

?


1

2

3

public boolean add(E e) {

        return map.put(e, PRESENT)==null;

    }

看到没有,HashSet就是依托HashMap中的key不能重复来实现HashSet中自身的元素不能重复的。 

下一篇文章就要讲讲HashMap的扩容。

时间: 2024-10-31 09:27:18

equals和hashCode源码解析的相关文章

java中的==、equals()、hashCode()源码分析

1. == java中的==是比较两个对象在JVM中的地址.比较好理解.看下面的代码: public class ComAddr{     public static void main(String[] args) throws Exception {         String s1 = "nihao";         String s2 = "nihao";         String s3 = new String("nihao")

Java集合学习(十三) WeakHashMap详细介绍(源码解析)和使用示例

这一章,我们对WeakHashMap进行学习. 我们先对WeakHashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用WeakHashMap. 第1部分 WeakHashMap介绍 WeakHashMap简介    WeakHashMap 继承于AbstractMap,实现了Map接口.    和HashMap一样,WeakHashMap 也是一个散列表,它存储的内容也是键值对(key-value)映射,而且键和值都可以是null.   不过WeakHashMap的键是"弱键&

Java集合学习(十二) TreeMap详细介绍(源码解析)和使用示例

这一章,我们对TreeMap进行学习. 第1部分 TreeMap介绍 TreeMap 简介 TreeMap 是一个有序的key-value集合,它是通过红黑树实现的. TreeMap继承于AbstractMap,所以它是一个Map,即一个key-value集合. TreeMap 实现了NavigableMap接口,意味着它支持一系列的导航方法.比如返回有序的key集合. TreeMap 实现了Cloneable接口,意味着它能被克隆. TreeMap 实现了java.io.Serializabl

Java集合学习(十一) Hashtable详细介绍(源码解析)和使用示例

这一章,我们对Hashtable进行学习. 我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable. 第1部分 Hashtable介绍 Hashtable 简介 和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射. Hashtable 继承于Dictionary,实现了Map.Cloneable.java.io.Serializable接口. Hashtable 的函数都是同步的,这意味着它是线

Java集合学习(十) HashMap详细介绍(源码解析)和使用示例

这一章,我们对HashMap进行学习. 我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap. 第1部分 HashMap介绍 HashMap简介 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射. HashMap 继承于AbstractMap,实现了Map.Cloneable.java.io.Serializable接口. HashMap 的实现不是同步的,这意味着它不是线程安全的.它的key.value都可以为null.此外

Java集合学习(六) Vector详细介绍(源码解析)和使用示例

学完ArrayList和LinkedList之后,我们接着学习Vector.学习方式还是和之前一样,先对Vector有个整体认识,然后再学习它的源码:最后再通过实例来学会使用它. 第1部分 Vector介绍 Vector简介 Vector 是矢量队列,它是JDK1.0版本添加的类.继承于AbstractList,实现了List, RandomAccess, Cloneable这些接口. Vector 继承了AbstractList,实现了List:所以,它是一个队列,支持相关的添加.删除.修改.

JAVA Vector源码解析和示例代码_java

第1部分 Vector介绍Vector 是矢量队列,它是JDK1.0版本添加的类.继承于AbstractList,实现了List, RandomAccess, Cloneable这些接口.Vector 继承了AbstractList,实现了List:所以,它是一个队列,支持相关的添加.删除.修改.遍历等功能.Vector 实现了RandmoAccess接口,即提供了随机访问功能.RandmoAccess是java中用来被List实现,为List提供快速访问功能的.在Vector中,我们即可以通过

Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例

概要 这一章,我们对HashMap进行学习.我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap.内容包括:第1部分 HashMap介绍第2部分 HashMap数据结构第3部分 HashMap源码解析(基于JDK1.6.0_45)    第3.1部分 HashMap的"拉链法"相关内容    第3.2部分 HashMap的构造函数    第3.3部分 HashMap的主要对外接口    第3.4部分 HashMap实现的Cloneable接口 

Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例

概要 前一章,我们学习了HashMap.这一章,我们对Hashtable进行学习.我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable.第1部分 Hashtable介绍第2部分 Hashtable数据结构第3部分 Hashtable源码解析(基于JDK1.6.0_45)第4部分 Hashtable遍历方式第5部分 Hashtable示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3310887.h