基于ARM-contexA9按键驱动开发

之前我们写过LED和蜂鸣器的驱动,其实那两个都是一个模版的,因为都是将IO口配置成输出模式,然后用高低电平来驱动这些设备。其实linux设备驱动,说白了跟单片机开发的方式是差不多的,只不过内核的开发基于各种框架,每个驱动会被编译成独立的模块,当需要它的时候就在上层打开设备后对其进行读写操作等等。 

     接下来,我们来看看按键驱动,按键,有独立按键,也有矩阵键盘。按键的检测,有扫描的,也有单个电平判断的。今天的按键驱动针对tiny4412底板的四个按键,我们对其进行编写驱动程序。 

    还是一样的,首先看电路原理图,找到按键的引脚:

   1、看原理图:

   (1)这是底板的四个按键的原理图:对应XEINT26-29,接下来我们找核心板看看按键具体接在那个IO口上/

   

(2)核心板原理图:

我们明显可以看到,4个按键分别接在GPX3这几个引脚上,对应着引脚,接下来我们就可以看数据手册,配置寄存器了

2、看数据手册

(1)我们对应的找到GPX3CON这个寄存器,将对应的都配置成输入模式,分别是GPX3CON[2]~GPX3CON[5]

(2)GPX3DAT,在这个寄存器中获取相应的按键的值

3、开始写按键驱动程序

<span style="font-size:18px;">#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#define DEV_NAME	"test-dev"
//定义按键配置寄存器的地址
#define GPX3CON     0x11000C60
volatile unsigned long *button_config = NULL ;
volatile unsigned long *button_dat = NULL ;
//open方法
int key_open(struct inode *inode, struct file *filp)
{
	printk("key_open\n");
	//配置4个按键为输入状态,因为按键是从GPXCON[2]开始的,所以要左移8位到对应的位置,将8位以后的16位清0
	//这样的话就将按键配置的寄存器设置为输入状态了,因为输入是0x0
	*button_config &= ~(0xffff << 8);
	return 0;
}
//read方法
ssize_t key_read(struct file *file , char __user *buf ,size_t size ,loff_t *offset)
{
	//如果传进来的size小于4,那么就返回-1
	if(size < 4){
		return -1 ;
	}
	unsigned char key_val  ;
	//获取按键的键值,因为按键是从该寄存器的第二位开始的,所以需要左移2位,接着与上0xf---1111
	//这样,如果用户按下按键,就会返回一个键值保存在key_val这个变量里
	key_val = (*button_dat >> 2) & 0xf ;
	//将获取到的值拷贝到用户空间
	copy_to_user(buf , &key_val , sizeof(key_val));
	//返回键值
	return  key_val ;
}
//close方法
int key_close(struct inode *inode, struct file *filp)
{
	printk("key_close\n");
	return 0;
}

struct file_operations fops = {
	.owner = THIS_MODULE ,
	.open = key_open,
	.read = key_read,
	.release = key_close,
};

int major ;
int test_init(void)
{
	printk("key_init\n");
	//注册设备
	major = register_chrdev(major, DEV_NAME, &fops);
	//映射端口
	button_config = (volatile unsigned long *)ioremap(GPX3CON , 16);
	button_dat = button_config + 1 ;
	return 0;
}

void test_exit(void)
{
	printk("key_exit\n");
	//注销设备
	unregister_chrdev(major, DEV_NAME);
	//取消映射
	iounmap(button_config);
}

module_init(test_init);
module_exit(test_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Y.X.YANG");
MODULE_VERSION("2016.1.16");</span><span style="font-size:14px;">
</span>

4、写测试程序

<span style="font-size:18px;">#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void delay(void);
int main(int argc, char **argv)
{
	int fd;
	unsigned int val = 0 ;
	char key_buf[4] = {0};
	fd = open("/dev/test-dev",O_RDWR) ;
	if(-1 == fd)
	{
		printf("open fair!\n");
		return -1 ;
	}
	while(1){
		//在这里,我已经提前做了一个程序将按键的值读出来了,那么直接看就行了。
		val = read(fd , key_buf , 4);
		switch(val)
		{
			case 7 :
						printf("the first_key press! key_val=%u\n",val);
						delay();
						break;
			case 11:
						printf("the second_key press! key_val=%u\n",val);
						delay();
						break ;
			case 13:
						printf("the third_key press! key_val=%u\n",val);
						delay();
						break ;
			case 14:
						printf("the fourth_key press! key_val=%u\n",val);
						delay();
						break ;
			default :
					  printf("no key is press!\n");
					  delay();
		}
	}
	return 0;
}

void delay(void)
{
	unsigned int i = 0xffffff ;
	while(i--);
}</span>

5、编写makefile

obj-m	+= button.o

ROOTFS = /disk/A9/filesystem
KERNEL = /disk/A9/linux-3.5/
all:
	make -C $(KERNEL) M=`pwd` modules

clean:
	make -C $(KERNEL) M=`pwd` clean
	rm -rf my_button

install:
	make -C $(KERNEL) M=`pwd` modules_install INSTALL_MOD_PATH=$(ROOTFS)

my_button:
	arm-linux-gcc my_button.c -o my_button

6、编译模块加插入模块(略)

7、执行测试程序

当没有按键按下的时候,switch分支语句执行default语句,表示按键没有按下。

当按键按下的时候,执行对应的case语句:

开发板:

按键就在开发板的左测,按下的时候屏幕就会打印相应的信息。

按键驱动程序的编写就是这样。写了三个驱动程序之后不知道大家有没有发现,我用的都是一个驱动程序的框架,都是照着框架修改就可以了,而不用重新去写,只不过用到对应的方法,那么就加上方法,这样也很简单,其实这样就跟直接去控制单片机的方式差不多的。往后还有ADC,串口,中断,液晶屏,触摸屏等,敬请期待。。。。

时间: 2024-11-01 02:26:11

基于ARM-contexA9按键驱动开发的相关文章

《嵌入式设备驱动开发精解》——1.2 基于ARM处理器的嵌入式Linux系统

1.2 基于ARM处理器的嵌入式Linux系统 嵌入式Linux应用开发完全手册 1.2.1 ARM处理器介绍 1.ARM的概念 嵌入式处理器种类繁多,有ARM.MIPS.PPC等多种架构.ARM处理器的文档丰富,各类嵌入式软件大多(往往首选)支持ARM处理器,使用ARM开发板来学习嵌入式开发是个好选择.基于不同架构CPU的开发是相通的,掌握ARM架构之后,在使用其他CPU时也会很快上手.当然,作为产品进行选材时,需要考虑的因素就非常多了,这不在本书的介绍范围之内. ARM(Advanced R

手把手教你写Linux设备驱动---中断(一)(基于友善之臂4412开发板)

今天,我们要来实现一个基于tiny4412开发板上的最简本的按键中断驱动程序,那么,写这个程序之前,我们先来了解下Linux中断的基本知识. 在Linux内核中,每一个能够发出中断请求的硬件设备控制器都有一条名为IRQ的输出线.所有现在存在的IRQ线都与一个名为可编程中断控制器的硬件电路的输入引脚相连,我们可以来看下4412上与板子上相连的按键. 下面这张电路图,也就是4412板子上按键的电路图和CPU的连接关系图: 我们明显可以看到,4个按键分别接在GPX3这几个引脚上,对应着引脚,接下来我们

《嵌入式Linux应用开发完全手册》——1.2 基于ARM处理器的嵌入式Linux系统

1.2 基于ARM处理器的嵌入式Linux系统 1.2.1 ARM处理器介绍 1.ARM的概念 嵌入式处理器种类繁多,有ARM.MIPS.PPC等多种架构.ARM处理器的文档丰富,各类嵌入式软件大多(往往首选)支持ARM处理器,使用ARM开发板来学习嵌入式开发是个好选择.基于不同架构CPU的开发是相通的,掌握ARM架构之后,在使用其他CPU时也会很快上手.当然,作为产品进行选材时,需要考虑的因素就非常多了,这不在本书的介绍范围之内. ARM(Advanced RISC Machine),既可以认

PC厂商都计划开发基于ARM架构笔记本

业界消息称,包括三星.东芝.宏碁和华硕在内的PC厂商都计划开发基于ARM架构笔记本,相关产品可能最早在今年年底发布.消息称,ARM架构处理器和Android系统的搭配两年前在智能本上使用过,东芝和联想也都在零售渠道发售过这种产品,但是由于市场需求低于预期,这种产品很快被市场淘汰.不过ARM架构处理器从两年前的单核心升级到现在的四核心,性能得到巨大提升,而且该平台的存储容量也得到显著增加,用户界面得到加强,ARM已经能够发售一款长时间运行的笔记本产品,如果价格合适,它完全有机会在IT业界开辟一片全

linux驱动开发--中断:按键中断

1.中断定义 中断是指cpu在执行过程中,出现了某些突发事件时cpu必须暂停执行当前的程序,转去处理突发事件,处理完毕后cpu又返回原程序被中断的位置并继续执行. 2.中断分类 3.Linux中断处理程序结构 a.在Linux系统中,中断处理程序分解为两个半部:顶半部(TopHalf)和底半部(BottomHalt). b.顶半部:完成尽可能少的比较紧急的功能,往往只是简单的读取寄存器中的中断状态并清除中断标志后就进行"登记中断"的工作,也就是将底半部处理程序挂到该设备的底半部执行队列

基于ARM-contexA9-Linux驱动开发:如何获取板子上独有的ID号

每个CPU,都有它固定的ID号,ID号就是这个CPU唯一的标识,它可能隐含着CPU的生产日期,版本号,型号等等,那么,在我们的这款友善之臂Tiny4412的板子上,我的这个CPU的ID又是多少呢?从我在光盘里拿到的linux-3.5内核其实已经将ID相关的驱动开发好了,我们在内核启动的过程中就可以看到板子CPU的ID:     看下图,我们看到CPU EXYNOS4412 (Id 0xe4412011).这个就是我板子上CPU的ID号.其它跟我相同的板子,虽然CPU也是相同的,但是板子的ID号会

《Linux 设备驱动开发详解(第2版)》——导读

前言 本书第1版在2008年初出版以后,受到广大读者的支持和厚爱,累计销售1.6万册,从几年的市场和读者反馈看,在第1版中还存在一些不足,主要是以下几方面. 没有现成的开发环境,读者需要从头到尾构建,而构建需要花费很长的时间,许多时候会不成功,加之配套光盘中的实例没有Makefile,更加大了操作的难度. 没有配套的开发板,大量的基于S3C2410的实例读者身边如果没有可以直接运行的平台,就无法亲身体验这些驱动. 个别内容实用性不强或过于陈旧,也有个别知识点的讲解语言晦涩,读者不易理解,如pla

WinCE USB驱动开发经验谈

WinCE USB驱动开发经验谈 随着USB2.0设备的不断增加,USB设备驱动开发在嵌入式开发中变的越来越重要.Windows CE支持USB 2.0更是对这一波新技术浪潮产生巨大的推动.近期我负责一个这样的项目,在WinCE下开发USB接口的外围设备驱动.当时做这个项目花费了我相当多的时间和精力,错走许多冤枉路使我精疲力尽. 项目需求是在已调好的ARM9板子上开发USB WiFi无线网卡的驱动程序,具体要求是驱动程序平台是WinCE,CPU类型支持ARM构架,要能比较方便地移植到X86:驱动

《Android深度探索(卷1):HAL与驱动开发》——6.4节使用多种方式测试Linux驱动

6.4 使用多种方式测试Linux驱动 Android深度探索(卷1):HAL与驱动开发 在上一节已经实现了一个简单的Linux驱动程序,该驱动的功能是统计给定字符串中的单词数,并且在最后已经将该Linux驱动的源代码成功编译成动态Linux驱动模块word_count.ko.下一步就是测试该模块.测试的方法很多,最常用的就是直接在Ubuntu Linux中测试.当然,这对于本章实现的Linux驱动是没问题的,但是对于需要直接访问硬件的驱动在Ubuntu Linux上测试就不太方便.在这种情况下