大数据挖掘算法篇之K-Means实例

一、引言

  K-Means算法是聚类算法中,应用最为广泛的一种。本文基于欧几里得距离公式:d = sqrt((x1-x2)^+(y1-y2)^)计算二维向量间的距离,作为聚类划分的依据,输入数据为二维数据两列数据,输出结果为聚类中心和元素划分结果。输入数据格式如下:

18
2
2
0.0 0.0
1.0 0.0
0.0 1.0
2.0 1.0
1.0 2.0
2.0 2.0
2.0 0.0
0.0 2.0
7.0 6.0
7.0 7.0
7.0 8.0
8.0 6.0
8.0 7.0
8.0 8.0
8.0 9.0
9.0 7.0
9.0 8.0
9.0 9.0

二、欧几里得距离:

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧氏距离,在n维空间内,最短的线的长度即为其欧氏距离。它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

d = sqrt((x1-x2)^+(y1-y2)^)

三维的公式是

d=sqrt((x1-x2)^+(y1-y2)^+(z1-z2)^)

推广到n维空间,欧式距离的公式是

d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。

三、代码示例

/****************************************************************************
*                                                                           *
*  KMEANS                                                                   *
*                                                                           *
*****************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <math.h>

// FUNCTION PROTOTYPES

// DEFINES
#define         SUCCESS         1
#define         FAILURE         0
#define         TRUE            1
#define         FALSE           0
#define         MAXVECTDIM      20
#define         MAXPATTERN      20
#define         MAXCLUSTER      10

char *f2a(double x, int width){
   char cbuf[255];
   char *cp;
   int i,k;
   int d,s;
    cp=fcvt(x,width,&d,&s);
    if (s) {
       strcpy(cbuf,"-");
     }
     else {
       strcpy(cbuf," ");
       } /* endif */
    if (d>0) {
       for (i=0; i<d; i++) {
          cbuf[i+1]=cp[i];
          } /* endfor */
       cbuf[d+1]=0;
       cp+=d;
       strcat(cbuf,".");
       strcat(cbuf,cp);
       } else {
          if (d==0) {
             strcat(cbuf,".");
             strcat(cbuf,cp);
             }
           else {
             k=-d;
             strcat(cbuf,".");
             for (i=0; i<k; i++) {
                strcat(cbuf,"0");
                } /* endfor */
             strcat(cbuf,cp);
             } /* endif */
       } /* endif */
    cp=&cbuf[0];
    return cp;
}

// ***** Defined structures & classes *****
struct aCluster {
   double       Center[MAXVECTDIM];
   int          Member[MAXPATTERN];  //Index of Vectors belonging to this cluster
   int          NumMembers;
};

struct aVector {
   double       Center[MAXVECTDIM];
   int          Size;
};

class System {
private:
   double       Pattern[MAXPATTERN][MAXVECTDIM+1];
   aCluster     Cluster[MAXCLUSTER];
   int          NumPatterns;          // Number of patterns
   int          SizeVector;           // Number of dimensions in vector
   int          NumClusters;          // Number of clusters
   void         DistributeSamples();  // Step 2 of K-means algorithm
   int          CalcNewClustCenters();// Step 3 of K-means algorithm
   double       EucNorm(int, int);   // Calc Euclidean norm vector
   int          FindClosestCluster(int); //ret indx of clust closest to pattern
                                         //whose index is arg
public:
   void system();
   int LoadPatterns(char *fname);      // Get pattern data to be clustered
   void InitClusters();                // Step 1 of K-means algorithm
   void RunKMeans();                   // Overall control K-means process
   void ShowClusters();                // Show results on screen
   void SaveClusters(char *fname);     // Save results to file
   void ShowCenters();
};
//输出聚类中心
void System::ShowCenters(){
    int i,j;
    printf("Cluster centers:\n");
    for (i=0; i<NumClusters; i++) {
       Cluster[i].Member[0]=i;
       printf("ClusterCenter[%d]=(%f,%f)\n",i,Cluster[i].Center[0],Cluster[i].Center[1]);
       } /* endfor */
    printf("\n");
    getchar();
}

//读取文件
int System::LoadPatterns(char *fname)
{
   FILE *InFilePtr;
   int    i,j;
   double x;
    if((InFilePtr = fopen(fname, "r")) == NULL)
        return FAILURE;
    fscanf(InFilePtr, "%d", &NumPatterns);  // Read # of patterns                18数据量
    fscanf(InFilePtr, "%d", &SizeVector);   // Read dimension of vector            2维度
    fscanf(InFilePtr, "%d", &NumClusters);  // Read # of clusters for K-Means    2簇
    for (i=0; i<NumPatterns; i++) {         // For each vector
       for (j=0; j<SizeVector; j++) {       // create a pattern
          fscanf(InFilePtr,"%lg",&x);       // consisting of all elements
          Pattern[i][j]=x;
          } /* endfor */
       } /* endfor */
    //输出所有数据元素
    printf("Input patterns:\n");
    for (i=0; i<NumPatterns; i++) {
       printf("Pattern[%d]=(%2.3f,%2.3f)\n",i,Pattern[i][0],Pattern[i][1]);
       } /* endfor */
    printf("\n--------------------\n");
    getchar();
    return SUCCESS;
}
//***************************************************************************
// InitClusters                                                             *
//   Arbitrarily assign a vector to each of the K clusters                  *
//   We choose the first K vectors to do this                               *
//***************************************************************************
//初始化聚类中心
void System::InitClusters(){
    int i,j;
    printf("Initial cluster centers:\n");
    for (i=0; i<NumClusters; i++) {
       Cluster[i].Member[0]=i;
       for (j=0; j<SizeVector; j++) {
          Cluster[i].Center[j]=Pattern[i][j];
          } /* endfor */
       } /* endfor */
    for (i=0; i<NumClusters; i++) {
        printf("ClusterCenter[%d]=(%f,%f)\n",i,Cluster[i].Center[0],Cluster[i].Center[1]);                //untransplant
       } /* endfor */
    printf("\n");
    getchar();
}
//运行KMeans
void System::RunKMeans(){
      int converged;
      int pass;
    pass=1;
    converged=FALSE;
    //第N次聚类
    while (converged==FALSE) {
       printf("PASS=%d\n",pass++);
       DistributeSamples();
       converged=CalcNewClustCenters();
       ShowCenters();
       getchar();
       } /* endwhile */
}
//在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是
//d = sqrt((x1-x2)^+(y1-y2)^)
//通过这种运算,就可以把所有列的属性都纳入进来
double System::EucNorm(int p, int c){        // Calc Euclidean norm of vector difference
    double dist,x;                          // between pattern vector, p, and cluster
    int i;                                  // center, c.
    char zout[128];
    char znum[40];
    char *pnum;
    //
    pnum=&znum[0];
    strcpy(zout,"d=sqrt(");
    printf("The distance from pattern %d to cluster %d is calculated as:\n",p,c);
    dist=0;
    for (i=0; i<SizeVector ;i++){
       //拼写字符串
       x=(Cluster[c].Center[i]-Pattern[p][i])*(Cluster[c].Center[i]-Pattern[p][i]);
       strcat(zout,f2a(x,4));
       if (i==0)
          strcat(zout,"+");
        //计算距离
       dist += (Cluster[c].Center[i]-Pattern[p][i])*(Cluster[c].Center[i]-Pattern[p][i]);
       } /* endfor */
    printf("%s)\n",zout);
    return dist;
}
//查找最近的群集
int System::FindClosestCluster(int pat){
   int i, ClustID;
   double MinDist, d;
    MinDist =9.9e+99;
    ClustID=-1;
    for (i=0; i<NumClusters; i++) {
       d=EucNorm(pat,i);
       printf("Distance from pattern %d to cluster %d is %f\n\n",pat,i,sqrt(d));
       if (d<MinDist) {
          MinDist=d;
          ClustID=i;
          } /* endif */
       } /* endfor */
    if (ClustID<0) {
       printf("Aaargh");
       exit(0);
       } /* endif */
    return ClustID;
}
//
void System::DistributeSamples(){
    int i,pat,Clustid,MemberIndex;
    //Clear membership list for all current clusters
    for (i=0; i<NumClusters;i++){
       Cluster[i].NumMembers=0;
       }
    for (pat=0; pat<NumPatterns; pat++) {
       //Find cluster center to which the pattern is closest
       Clustid= FindClosestCluster(pat);//查找最近的聚类中心
       printf("patern %d assigned to cluster %d\n\n",pat,Clustid);
       //post this pattern to the cluster
       MemberIndex=Cluster[Clustid].NumMembers;
       Cluster[Clustid].Member[MemberIndex]=pat;
       Cluster[Clustid].NumMembers++;
       } /* endfor */
}
//计算新的群集中心
int  System::CalcNewClustCenters(){
   int ConvFlag,VectID,i,j,k;
   double tmp[MAXVECTDIM];
   char xs[255];
   char ys[255];
   char nc1[20];
   char nc2[20];
   char *pnc1;
   char *pnc2;
   char *fpv;

    pnc1=&nc1[0];
    pnc2=&nc2[0];
    ConvFlag=TRUE;
    printf("The new cluster centers are now calculated as:\n");
    for (i=0; i<NumClusters; i++) {              //for each cluster
       pnc1=itoa(Cluster[i].NumMembers,nc1,10);
       pnc2=itoa(i,nc2,10);
       strcpy(xs,"Cluster Center");
       strcat(xs,nc2);
       strcat(xs,"(1/");
       strcpy(ys,"(1/");
       strcat(xs,nc1);
       strcat(ys,nc1);
       strcat(xs,")(");
       strcat(ys,")(");
       for (j=0; j<SizeVector; j++) {            // clear workspace
          tmp[j]=0.0;
          } /* endfor */
       for (j=0; j<Cluster[i].NumMembers; j++) { //traverse member vectors
          VectID=Cluster[i].Member[j];
          for (k=0; k<SizeVector; k++) {         //traverse elements of vector
                 tmp[k] += Pattern[VectID][k];       // add (member) pattern elmnt into temp
                 if (k==0) {
                      strcat(xs,f2a(Pattern[VectID][k],3));
                    } else {
                      strcat(ys,f2a(Pattern[VectID][k],3));
                      } /* endif */
            } /* endfor */
          if(j<Cluster[i].NumMembers-1){
             strcat(xs,"+");
             strcat(ys,"+");
             }
            else {
             strcat(xs,")");
             strcat(ys,")");
             }
          } /* endfor */
       for (k=0; k<SizeVector; k++) {            //traverse elements of vector
          tmp[k]=tmp[k]/Cluster[i].NumMembers;
          if (tmp[k] != Cluster[i].Center[k])
             ConvFlag=FALSE;
          Cluster[i].Center[k]=tmp[k];
          } /* endfor */
       printf("%s,\n",xs);
       printf("%s\n",ys);
       } /* endfor */
    return ConvFlag;
}
//输出聚类
void System::ShowClusters(){
   int cl;
    for (cl=0; cl<NumClusters; cl++) {
       printf("\nCLUSTER %d ==>[%f,%f]\n", cl,Cluster[cl].Center[0],Cluster[cl].Center[1]);
       } /* endfor */
}

void System::SaveClusters(char *fname){
}

四、主调程序

void main(int argc, char *argv[])
{

   System kmeans;
   /*
    if (argc<2) {
       printf("USAGE: KMEANS PATTERN_FILE\n");
       exit(0);
       }*/
    if (kmeans.LoadPatterns("KM2.DAT")==FAILURE ){
       printf("UNABLE TO READ PATTERN_FILE:%s\n",argv[1]);
       exit(0);
        }

    kmeans.InitClusters();
    kmeans.RunKMeans();
    kmeans.ShowClusters();
}

五、输出结果

Input patterns:
Pattern[0]=(0.000,0.000)
Pattern[1]=(1.000,0.000)
Pattern[2]=(0.000,1.000)
Pattern[3]=(2.000,1.000)
Pattern[4]=(1.000,2.000)
Pattern[5]=(2.000,2.000)
Pattern[6]=(2.000,0.000)
Pattern[7]=(0.000,2.000)
Pattern[8]=(7.000,6.000)
Pattern[9]=(7.000,7.000)
Pattern[10]=(7.000,8.000)
Pattern[11]=(8.000,6.000)
Pattern[12]=(8.000,7.000)
Pattern[13]=(8.000,8.000)
Pattern[14]=(8.000,9.000)
Pattern[15]=(9.000,7.000)
Pattern[16]=(9.000,8.000)
Pattern[17]=(9.000,9.000)

--------------------

Initial cluster centers:
ClusterCenter[0]=(0.000000,0.000000)
ClusterCenter[1]=(1.000000,0.000000)

PASS=1
The distance from pattern 0 to cluster 0 is calculated as:
d=sqrt( .0000+ .0000)
Distance from pattern 0 to cluster 0 is 0.000000

The distance from pattern 0 to cluster 1 is calculated as:
d=sqrt( 1.0000+ .0000)
Distance from pattern 0 to cluster 1 is 1.000000

patern 0 assigned to cluster 0

The distance from pattern 1 to cluster 0 is calculated as:
d=sqrt( 1.0000+ .0000)
Distance from pattern 1 to cluster 0 is 1.000000

The distance from pattern 1 to cluster 1 is calculated as:
d=sqrt( .0000+ .0000)
Distance from pattern 1 to cluster 1 is 0.000000

patern 1 assigned to cluster 1

The distance from pattern 2 to cluster 0 is calculated as:
d=sqrt( .0000+ 1.0000)
Distance from pattern 2 to cluster 0 is 1.000000

The distance from pattern 2 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 1.0000)
Distance from pattern 2 to cluster 1 is 1.414214

patern 2 assigned to cluster 0

The distance from pattern 3 to cluster 0 is calculated as:
d=sqrt( 4.0000+ 1.0000)
Distance from pattern 3 to cluster 0 is 2.236068

The distance from pattern 3 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 1.0000)
Distance from pattern 3 to cluster 1 is 1.414214

patern 3 assigned to cluster 1

The distance from pattern 4 to cluster 0 is calculated as:
d=sqrt( 1.0000+ 4.0000)
Distance from pattern 4 to cluster 0 is 2.236068

The distance from pattern 4 to cluster 1 is calculated as:
d=sqrt( .0000+ 4.0000)
Distance from pattern 4 to cluster 1 is 2.000000

patern 4 assigned to cluster 1

The distance from pattern 5 to cluster 0 is calculated as:
d=sqrt( 4.0000+ 4.0000)
Distance from pattern 5 to cluster 0 is 2.828427

The distance from pattern 5 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 4.0000)
Distance from pattern 5 to cluster 1 is 2.236068

patern 5 assigned to cluster 1

The distance from pattern 6 to cluster 0 is calculated as:
d=sqrt( 4.0000+ .0000)
Distance from pattern 6 to cluster 0 is 2.000000

The distance from pattern 6 to cluster 1 is calculated as:
d=sqrt( 1.0000+ .0000)
Distance from pattern 6 to cluster 1 is 1.000000

patern 6 assigned to cluster 1

The distance from pattern 7 to cluster 0 is calculated as:
d=sqrt( .0000+ 4.0000)
Distance from pattern 7 to cluster 0 is 2.000000

The distance from pattern 7 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 4.0000)
Distance from pattern 7 to cluster 1 is 2.236068

patern 7 assigned to cluster 0

The distance from pattern 8 to cluster 0 is calculated as:
d=sqrt( 49.0000+ 36.0000)
Distance from pattern 8 to cluster 0 is 9.219544

The distance from pattern 8 to cluster 1 is calculated as:
d=sqrt( 36.0000+ 36.0000)
Distance from pattern 8 to cluster 1 is 8.485281

patern 8 assigned to cluster 1

The distance from pattern 9 to cluster 0 is calculated as:
d=sqrt( 49.0000+ 49.0000)
Distance from pattern 9 to cluster 0 is 9.899495

The distance from pattern 9 to cluster 1 is calculated as:
d=sqrt( 36.0000+ 49.0000)
Distance from pattern 9 to cluster 1 is 9.219544

patern 9 assigned to cluster 1

The distance from pattern 10 to cluster 0 is calculated as:
d=sqrt( 49.0000+ 64.0000)
Distance from pattern 10 to cluster 0 is 10.630146

The distance from pattern 10 to cluster 1 is calculated as:
d=sqrt( 36.0000+ 64.0000)
Distance from pattern 10 to cluster 1 is 10.000000

patern 10 assigned to cluster 1

The distance from pattern 11 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 36.0000)
Distance from pattern 11 to cluster 0 is 10.000000

The distance from pattern 11 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 36.0000)
Distance from pattern 11 to cluster 1 is 9.219544

patern 11 assigned to cluster 1

The distance from pattern 12 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 49.0000)
Distance from pattern 12 to cluster 0 is 10.630146

The distance from pattern 12 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 49.0000)
Distance from pattern 12 to cluster 1 is 9.899495

patern 12 assigned to cluster 1

The distance from pattern 13 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 64.0000)
Distance from pattern 13 to cluster 0 is 11.313708

The distance from pattern 13 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 64.0000)
Distance from pattern 13 to cluster 1 is 10.630146

patern 13 assigned to cluster 1

The distance from pattern 14 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 81.0000)
Distance from pattern 14 to cluster 0 is 12.041595

The distance from pattern 14 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 81.0000)
Distance from pattern 14 to cluster 1 is 11.401754

patern 14 assigned to cluster 1

The distance from pattern 15 to cluster 0 is calculated as:
d=sqrt( 81.0000+ 49.0000)
Distance from pattern 15 to cluster 0 is 11.401754

The distance from pattern 15 to cluster 1 is calculated as:
d=sqrt( 64.0000+ 49.0000)
Distance from pattern 15 to cluster 1 is 10.630146

patern 15 assigned to cluster 1

The distance from pattern 16 to cluster 0 is calculated as:
d=sqrt( 81.0000+ 64.0000)
Distance from pattern 16 to cluster 0 is 12.041595

The distance from pattern 16 to cluster 1 is calculated as:
d=sqrt( 64.0000+ 64.0000)
Distance from pattern 16 to cluster 1 is 11.313708

patern 16 assigned to cluster 1

The distance from pattern 17 to cluster 0 is calculated as:
d=sqrt( 81.0000+ 81.0000)
Distance from pattern 17 to cluster 0 is 12.727922

The distance from pattern 17 to cluster 1 is calculated as:
d=sqrt( 64.0000+ 81.0000)
Distance from pattern 17 to cluster 1 is 12.041595

patern 17 assigned to cluster 1

The new cluster centers are now calculated as:
Cluster Center0(1/3)( .000+ .000+ .000),
(1/3)( .000+ 1.000+ 2.000)
Cluster Center1(1/15)( 1.000+ 2.000+ 1.000+ 2.000+ 2.000+ 7.000+ 7.000+ 7.000+ 8
.000+ 8.000+ 8.000+ 8.000+ 9.000+ 9.000+ 9.000),
(1/15)( .000+ 1.000+ 2.000+ 2.000+ .000+ 6.000+ 7.000+ 8.000+ 6.000+ 7.000+ 8.00
0+ 9.000+ 7.000+ 8.000+ 9.000)
Cluster centers:
ClusterCenter[0]=(0.000000,1.000000)
ClusterCenter[1]=(5.866667,5.333333)
时间: 2024-09-01 12:47:07

大数据挖掘算法篇之K-Means实例的相关文章

十大数据挖掘算法及各自优势

  国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响. 1. C4.5

各大排序算法性能比较及演示实例

所谓排序,即将原来无序的一个序列重新排列成有序的序列. 排序方法中涉及到稳定性,所谓稳定性,是指待排序的序列中有两个或两个以上相同的项,在排序前和排序后看这些相同项的相对位置有没有发生变化,如果没有发生变化,即该排序方法是稳定的,如果发生变化,则说明该排序方法是不稳定的. 如果记录中关键字不能重复,则排序结果是唯一的,那么选择的排序方法稳定与否就无关紧要了:如果关键字可以重复,则在选择排序方法时,就要根据具体的需求来考虑选择稳定还是不稳定的排序方法.那么,哪些排序算法是不稳定的呢? "快些选堆&

数据挖掘十大经典算法(详解)

数据挖掘十大经典算法  一. C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:  1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足:  2) 在树构造过程中进行剪枝:  3) 能够完成对连续属性的离散化处理:  4) 能够对不完整数据进行处理.  C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过程中,需要对数据

数据挖掘领域十大经典算法

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 早前评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响. 1.C4.5 C4.5算法是机

数据挖掘十大经典算法

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.  不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响. 1.C4.5 

数据挖掘十大经典算法——Naive Baye

数据挖掘十大经典算法(9) Naive Baye 简介 贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务.概率推理是与确定性推理相对应的.而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概4英寸等特征,该水果可以被判定为是苹果. 尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的.朴素贝叶斯分类器依靠精确的

数据挖掘十大经典算法——kNN

数据挖掘十大经典算法(8) kNN 1.K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空 间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 2.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量

数据挖掘十大经典算法——Apriori

数据挖掘十大经典算法(4)Apriori Apriori算法是种最有影响的挖掘布尔关联规则频繁项集的算法.它的核心是基于两阶段频集思想的递推算法.该关联规则在分类上属于单维.单层.布尔关联规则.在这里,所有支持度大于最小支持度的项集称为频繁项集(简称频集),也常称为最大项目集. 在Apriori算法中,寻找最大项目集(频繁项集)的基本思想是:算法需要对数据集进行多步处理.第一步,简单统计所有含一个元素项目集出现的频数,并找出那些不小于最小支持度的项目集,即一维最大项目集.从第二步开始循环处理直到

数据挖掘十大经典算法——k-means

二.数据挖掘十大经典算法(2) k-means 术语"k-means"最早是由James MacQueen在1967年提出的,这一观点可以追溯到1957年 Hugo Steinhaus所提出的想法.1957年,斯图亚特•劳埃德最先提出这一标准算法,当初是作为一门应用于脉码调制的技术,直到1982年,这一算法才在贝尔实验室被正式提出.1965年, E.W.Forgy发表了一个本质上是相同的方法,1975年和1979年,Hartigan和Wong分别提出了一个更高效的版本. 算法描述 输入