《面向机器智能的TensorFlow实践》一1.7 TensorFlow的优势

1.7 TensorFlow的优势

1.易用性

相对而言,TensorFlow工作流易于理解。它的API保持着高度的一致性,这意味着在尝试不同模型时,无需从头学习一套新的东西。

TensorFlow API很稳定,维护者始终在努力确保每次改动都向下兼容。

TensorFlow与NumPy无缝集成,可使大多数了解Python的数据科学家如鱼得水。

不同于其他库,TensorFlow不占编译时间。这就使用户可快速验证自己的想法,而省去了专门的等待时间。

目前已有多种高层接口构建在TensorFlow之上,如Keras和SkFlow。这就使得即便用户不希望动手实现整个模型,也可以利用TensorFlow的优势。

2.灵活性

TensorFlow能够运行在不同类型和尺寸的机器之上。这使得TensorFlow无论是在超级计算机上,还是在嵌入式系统,或任何其他介于两者之间的计算机上都有用武之地。

TensorFlow的分布式架构使得在大规模数据集上的模型训练可在合理的时间内完成。

TensorFlow可利用CPU、GPU,或同时使用这两者。

3.高效性

当TensorFlow的第一个版本发布时,它在很多流行的机器学习基准测试中都非常低效。从那时起,TensorFlow的开发团队便投入大量的时间和精力对TensorFlow代码的大部分实现进行改进。如今,TensorFlow中大部分库的性能已有了显著提升,已成为众多开源机器学习框架中居于榜首位置的有力竞争者。

TensorFlow的效率仍在持续地得到改进,因为有越来越多的开发者正在共同努力带来更好的实现。

4.幕后支持

TensorFlow为谷歌所支持。谷歌已为其投入巨大的资源,因为它希望TensorFlow成为机器学习研究者和开发者的通用语言。此外,谷歌也在利用TensorFlow完成其日常工作,并且通过投资来为TensorFlow提供持续不断的支持。

围绕TensorFlow已经形成了一个不可思议的社区,从社区中的知名成员或GitHub上的知名开发者那里得到回应相对比较容易。

谷歌已经发布了若干用TensorFlow预训练的机器学习模型。它们可供免费使用,使得无需大量数据的流水线便可迅速实现原型系统。

5.额外特性

当需要对模型进行调试和可视化时,TensorBoard便体现出极为重要的价值,而在其他机器学习库中,并无类似的功能。

TensorFlow
Serving可能是会使得更多的初创公司将服务和资源投入到机器学习领域的软件,因为重新实现代码来部署某个模型所需付出的代价绝对不可小觑。

时间: 2024-11-02 13:35:05

《面向机器智能的TensorFlow实践》一1.7 TensorFlow的优势的相关文章

TensorFlow实践_第一个TensorFlow程序

import tensorflow as tf a = tf.constant([1.0, 2.0], name = 'a') b = tf.constant([2.0, 3.0], name = 'b') result = a + b print (a) print (b) print (result) sess = tf.Session() sess.run(result) print (result)

《面向机器智能的TensorFlow实践》TensorFlow与机器学习基础

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第节,作者山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt) 阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. TensorFlow基础 3.1 数据流图简介 本节将脱离TensorFlow的语境,介绍一些数据流图的基础知识,内容包括节点.边和节点依赖

《面向机器智能的TensorFlow实践》引言

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第节,作者山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt) 阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. 引 言2 1.1 无处不在的数据 我们正实实在在地处于"信息时代".如今,各种数据从无穷无尽的渠道不断涌入:智能手机.手

《面向机器智能的TensorFlow实践》安装TensorFlow10

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第节,作者山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt) 阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. 安装TensorFlow 在开始使用TensorFlow之前,需要先将其安装到计算机中.幸运的是,TensorFlow官网提供了一份在Lin

面向机器智能的TensorFlow实践》一1.1 无处不在的数据

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第1节,作者 山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt)阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. PART 1 TensorFlow 第1章 引言 第2章 安装TensorFlow     CHAPTER 1 第1章 引 言 1.1 无

IOS平台TensorFlow实践:实际应用教程(附源码)(二)

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud   作者简介: MATTHIJS HOLLEMANS 荷兰人,独立开发者,专注于底层编码,GPU优化和算法研究.目前研究方向为IOS上的深度学习及其在APP上的应用. 推特地址:https://twitter.com/mhollemans 邮件地址:mailto:matt@machinethink.net github地址:https://github.com/hollance 个人博客:http://mac

IOS平台TensorFlow实践:逻辑斯蒂回归(附源码)(一)

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud   作者简介: MATTHIJS HOLLEMANS 荷兰人,独立开发者,专注于底层编码,GPU优化和算法研究.目前研究方向为IOS上的深度学习及其在APP上的应用. 推特地址:https://twitter.com/mhollemans 邮件地址:mailto:matt@machinethink.net github地址:https://github.com/hollance 个人博客:http://mac

《面向机器智能的TensorFlow实践》一3.2 在TensorFlow中定义数据流图

3.2 在TensorFlow中定义数据流图 在本书中,你将接触到多样化的以及相当复杂的机器学习模型.然而,不同的模型在TensorFlow中的定义过程却遵循着相似的模式.当掌握了各种数学概念,并学会如何实现它们时,对TensorFlow核心工作模式的理解将有助于你脚踏实地开展工作.幸运的是,这个工作流非常容易记忆,它只包含两个步骤: 1)定义数据流图. 2)运行数据流图(在数据上). 这里有一个显而易见的道理,如果数据流图不存在,那么肯定无法运行它.头脑中有这种概念是很有必要的,因为当你编写代

《面向机器智能的TensorFlow实践》一 2.4 TensorFlow的简易安装

2.4 TensorFlow的简易安装 如果只是希望尽快上手实践一些入门的例子,而不关心是否有GPU支持,则可从TensorFlow官方预制的二进制安装程序中择一.请确保你的Virtualenv环境处于活动状态,并运行下列与你的操作系统和Python版本对应的命令: 1. Linux 64位安装   2. Mac OS X安装   从技术角度,可以使用带有GPU支持的预制TensorFlow二进制安装程序,但它需要特定版本的NVIDIA软件,且与未来版本不兼容.

《面向机器智能的TensorFlow实践》一1.4 TensorFlow:技术概要

1.4 TensorFlow:技术概要 本小节将给出一些关于TensorFlow库的高层信息,如它是什么.它的发展史.用例以及与竞争对手的比较.决策制定者.利益相关者以及任何希望了解TensorFlow背景的人都会从本小节受益. 谷歌的深度学习研究简史 谷歌最初开发的大规模深度学习工具是谷歌大脑(Google Brain)团队研发的DistBelief.自创建以来,它便被数十个团队应用于包括深度神经网络在内的不计其数的项目中.然而,像许多开创性的工程项目一样,DistBelief也存在一些限制了