《中国人工智能学会通讯》——11.38 在线鲁棒负荷频率控制器设计

11.38 在线鲁棒负荷频率控制器设计

频率稳定是电力系统安全稳定运行的重要因素,它反映了电力系统中有功功率供需平衡的基本状态, 频率异常将会给发电机和系统的安全运行,以及用户带来极为严重的后果。然而对于电力系统而言,负荷总是不断变化的,还可能随时发生各种故障,这样导致很难建立精确的电力系统的数学模型,因此在实施负荷频率控制中[40-41] ,应该保证控制的具有良好的鲁棒性。文献 [42] 采用了变结构控制思想设计了负荷频率控制器以提高动态品质。文献 [43] 在 Riccati 方程中考虑系统参数变化的边界,保证系统在可接受的不确定范围内渐近问题且具有一定的鲁棒性。文献 [44] 从特征结构配置方面考虑鲁棒设计,可使闭环极点在一定的期望区域内得到一定的优化,有效提高了系统的暂态特性。可见,现有方法在一定程度上解决了系统不确定因素等问题,但也存在控制复杂、困难和鲁棒性差等问题;同时受到模型的精确性和实际系统结构的复杂性等因素的影响,使得某些情况下控制效果并没有得到充分的优化。

为此,针对动态知识未知电力系统的负荷频率控制问题,我们提出了一个基于 ADP 在线 H ∞鲁棒负荷频率控制器设计方案。首先利用 H ∞控制方法来处理系统的不确定性,再通过利用二人零和微分对策理论来解决 H ∞控制问题。接着基于 ADP 技术和克罗内克积理论,给出了一个基于数据的在线ADP 算法,该算法通过利用系统状态和输入的在线信息学习博弈代数 Riccati 方程的解,并给出了算法的收敛性及最优性分析,从而有效解决电力系统动态知识完全未知的在线负荷频率鲁棒控制问题。

时间: 2024-12-02 05:42:48

《中国人工智能学会通讯》——11.38 在线鲁棒负荷频率控制器设计的相关文章

《中国人工智能学会通讯》——11.39 结束语

11.39 结束语 本文基于近似动态规划对若干优化控制问题进行了深入研究,通过利用神经网络作为在线参数结构,首先提出了以因果关系同时得到跟踪控制器的反馈项和前馈项的新理论,以及数据驱动 ADP 算法实现以在线方式获得系统的最优跟踪控制器:其次提出了基于 ADP 在线自适应策略学习方案,解决了离散时间非线性系统在线 H ∞优化控制问题:接着,利用一个非二次型泛函克服了执行饱和约束问题,同时通过引入协状态函数而消除求解约束 HJB方程中的导数项和积分项,提出了两级迭代二次启发式规划算法,有效解决了在

中国人工智能学会通讯——混合智能概念与新进展

脑科学以阐明脑的工作原理为目标,近年来已成为最重要的科学前沿领域之一.脑功能计算.脑智能模仿再度成为学术界和产业界热议话题[1-4].欧盟.美国.日本相继启动了大型脑研究计划,强有力推动了人们对脑结构.脑功能和脑智能的探索和认识:另一方面,人工智能研究风起云涌,最近一个标志性事件是谷歌的AlphaGo以4:1战胜围棋世界冠军李世石[5],实现了围棋人工智能领域史无前例的突破.2016年9月斯坦福大学发布了<2030年的人工智能与生活>报告[6],全面评估了当前人工智能的进展.挑战.机遇与展望.

中国人工智能学会通讯——机器学习里的贝叶斯基本理论、模型和算法

非常感 谢周老师给这个机会让我跟大家分享一下.我今天想和大家分享的是,在深度学习或者大数据环境下我们怎么去看待相对来说比较传统的一类方法--贝叶斯方法.它是在机器学习和人工智能里比较经典的方法. 类似的报告我之前在CCF ADL讲过,包括去年暑假周老师做学术主任在广州有过一次报告,大家如果想看相关的工作,我们写了一篇文章,正好我今天讲的大部分思想在这个文章里面有一个更系统的讲述,大家可以下去找这篇文章读. 这次分享主要包括三个部分: 第一部分:基本理论.模型和算法 贝叶斯方法基础 正则化贝叶斯推

中国人工智能学会通讯——无智能,不驾驶——面向未来的智能驾驶时代 ( 下 )

到目前为止似乎比较完美,而实际还 存在着一些问题.我们现在看到很多道 路上面,交通标志牌它的分布非常稀疏, 可能每过一两公里才能够检测出来一个 交通标志牌,因为毕竟这个深度学习算 法是目前最完美的,它有时候还会错过 一个交通标志牌,这时候怎么办呢?我 们会发现在路面上也有非常明显的视觉 特征,我只要把路面的这些视觉特征识 别出来进行匹配,其实是有连续的绝对 的视觉参考的.所以我们做的办法是, 把这个路面粘贴起来.这个粘贴的方法 很简单,跟我们手机拍场景图片一样, 我们慢慢移动的时候可以把这个场景

中国人工智能学会通讯——深蓝、沃森与AlphaGo

在 2016 年 3 月 份,正当李 世石与AlphaGo 进行人机大战的时候,我曾经写过 一 篇< 人 工 智 能 的 里 程 碑: 从 深 蓝 到AlphaGo>,自从 1997 年深蓝战胜卡斯帕罗夫之后,随着计算机硬件水平的提高,计算机象棋(包括国际象棋和中国象棋)水平有了很大的提高,达到了可以战胜人类最高棋手的水平.但是,长期以来,在计算机围棋上进展却十分缓慢,在 2006 年引入了蒙特卡洛树搜索方法之后,也只能达到业余 5 段的水平.所以 AlphaGo 战胜韩国棋手李世石,确实是人

中国人工智能学会通讯——深度学习与视觉计算 1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

1.3 计算机视觉领域利用深度学习可能带来的未来研究方向 第一个,深度图像分析.目前基于深度 学习的图像算法在实验数据库上效果还是 不错的,但是远远不能够满足实际大规模 应用需求,需要进一步的提升算法性能从 而能够转化相应的实际应用.比如这个基 于图片的应用,可以估计性别和年龄,但 是其实经常会犯错,因此需要进一步提升 深度图像分析的性能. 第二个,深度视频分析.视频分析牵扯 到大量的数据和计算量,所以做起来更加 麻烦.当前深度视频分析还处于起步的阶 段,然而视频应用非常广泛,比如人机交互. 智

中国人工智能学会通讯——智创未来 未来已来

2016 年带着我们难忘的记忆,就这样翻篇了.由我们学会发起.全国多个组织积极参与的.纪念全球人工智能 60 年的一个个系列活动历历在目,在我们身边发生的种种无人驾驶的比赛和试验活动还在让我们激动不已,AlphaGo 战胜人类围棋冠军李世石的震荡被 Master 的新战绩推向又一个新高潮,时间就这样把我们带入了新的一年--2017 年. 对 2017 年的人工智能,我们会有什么期待呢? 深度学习会火 无人驾驶会火 机器人产业会火 机器同传会火 人机博弈会火 交互认知会火 不确定性人工智能会火 智

中国人工智能学会通讯——着力突破与创新 实现超越与引领

提 要 2016年3月,围棋人机大战的结果,在舆论界激起了惊涛骇浪:在科技界也引起了强烈反响.为了把握人工智能的发展现状和规律,探讨我国人工智能的发展战略,在中国人工智能学会和众多人工智能同行的支持下,由本文作者出面申请了一次高层战略研讨会,这就是以"发展人工智能,引领科技创新"为主题的香山科学会议.与会者同气相求.同心协力,站在国家战略的高度,以纵览全球的视野,通过深入的研讨和论证,凝聚了诸多宝贵的共识,形成了直送中央的<关于加快发展我国人工智能的专家建议>.本文简要介绍

中国人工智能学会通讯——2016机器智能前沿论坛召开

2016 年 12 月 17 日,由中国人工智能学会.中国工程院战略咨询中心主办,今日头条.IEEE<计算科学评论>协办的"2016机器智能前沿论坛"暨"2016 BYTE CUP国际机器学习竞赛颁奖仪式"在中国工程院举办.论坛嘉宾包括中外顶尖的数据挖掘.机器学习,以及自然语言处理方向的专家学者. 与以往不同,本次论坛除介绍机器学习的重大进展和应用外,还着重讨论了机器学习技术在媒体数据上的应用,并为2016 BYTE CUP 国际机器学习竞赛的获奖选手进