DFS与BFS的区别、用法、详解?
写在最前的三点:
1、所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次。
2、实现bfs和dfs都需要解决的一个问题就是如何存储图。一般有两种方法:邻接矩阵和邻接表。这里为简单起
见,均采用邻接矩阵存储,说白了也就是二维数组。
3、本文章的小测试部分的测试实例是下图:
一、深度优先搜索遍历
1、从顶点v出发深度遍历图G的算法
① 访问v
② 依次从顶点v未被访问的邻接点出发深度遍历。
2、一点心得:dfs算法最大特色就在于其递归特性,使得算法代码简洁。但也由于递归使得算法难以理解,原因
在于递归使得初学者难以把握程序运行到何处了!一点建议就是先学好递归,把握函数调用是的种种。
3、算法代码:
[cpp] view plain copy
- #include
- using namespace std;
- int a[11][11];
- bool visited[11];
- void store_graph() //邻接矩阵存储图
- {
- int i,j;
- for(i=1;i<=10;i++)
- for(j=1;j<=10;j++)
- cin>>a[i][j];
- }
- void dfs_graph() //深度遍历图
- {
- void dfs(int v);
- memset(visited,false,sizeof(visited));
- for(int i=1;i<=10;i++) //遍历每个顶点是为了防止图不连通时无法访问每个顶点
- if(visited[i]==false)
- dfs(i);
- }
- void dfs(int v) //深度遍历顶点
- {
- int Adj(int x);
- cout<<v<<" "; //访问顶点v
- visited[v]=true;
- int adj=Adj(v);
- while(adj!=0)
- {
- if(visited[adj]==false)
- dfs(adj); //递归调用是实现深度遍历的关键所在
- adj=Adj(v);
- }
- }
- int Adj(int x) //求邻接点
- {
- for(int i=1;i<=10;i++)
- if(a[x][i]==1 && visited[i]==false)
- return i;
- return 0;
- }
- int main()
- {
- cout<<"初始化图:"<<endl;
- store_graph();
- cout<<"dfs遍历结果:"<<endl;
- dfs_graph();
- return 0;
- }
4、小测试
二、广度优先搜索遍历
1、从顶点v出发遍历图G的算法买描述如下:
①访问v
②假设最近一层的访问顶点依次为vi1,vi2,vi3...vik,则依次访问vi1,vi2,vi3...vik的未被访问的邻接点
③重复②知道没有未被访问的邻接点为止
2、一点心得:bfs算法其实就是一种层次遍历算法。从算法描述可以看到该算法要用到队列这一数据结构。我这
里用STL中的实现。该算法由于不是递归算法,所以程序流程是清晰的。
3、算法代码:
[cpp] view plain copy
- #include
- #include
- using namespace std;
- int a[11][11];
- bool visited[11];
- void store_graph()
- {
- for(int i=1;i<=10;i++)
- for(int j=1;j<=10;j++)
- cin>>a[i][j];
- }
- void bfs_graph()
- {
- void bfs(int v);
- memset(visited,false,sizeof(visited));
- for(int i=1;i<=10;i++)
- if(visited[i]==false)
- bfs(i);
- }
- void bfs(int v)
- {
- int Adj(int x);
- queue<<span
class="datatypes" style="margin: 0px; padding: 0px; border: none;
color: rgb(46, 139, 87); background-color: inherit; font-weight:
bold;">int> myqueue; - int adj,temp;
- cout<<v<<" ";
- visited[v]=true;
- myqueue.push(v);
- while(!myqueue.empty()) //队列非空表示还有顶点未遍历到
- {
- temp=myqueue.front(); //获得队列头元素
- myqueue.pop(); //头元素出对
- adj=Adj(temp);
- while(adj!=0)
- {
- if(visited[adj]==false)
- {
- cout<<adj<<" ";
- visited[adj]=true;
- myqueue.push(adj); //进对
- }
- adj=Adj(temp);
- }
- }
- }
- int Adj(int x)
- {
- for(int i=1;i<=10;i++)
- if(a[x][i]==1 && visited[i]==false)
- return i;
- return 0;
- }
- int main()
- {
- cout<<"初始化图:"<<endl;
- store_graph();
- cout<<"bfs遍历结果:"<<endl;
- bfs_graph();
- return 0;
- }
4、小测试:
时间: 2024-10-27 08:58:28