浙江大学2015年数学分析考研试题

1. 求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$

 

2. 求 $$\bex \lim_{x\to 0^+}\sez{\frac{1}{x^5}\int_0^x e^{-t^2}\rd t +\frac{1}{3}\frac{1}{x^2}-\frac{1}{x^4}}. \eex$$

 

 

3. 设 $$\bex I(r)=\oint_L \dfrac{y}{x^2+y^2}\rd x-\dfrac{x}{x^2+y^2}\rd y, \eex$$ 其中 $L$ 为 $x^2+xy+y^2=r^2$, 取正方向. 求 $\dps{\lim_{r\to \infty}I(r)}$.

 

 

4. 求 $$\bex \int_{e^{-2n\pi}}^0 \sin \ln \dfrac{1}{x}\rd x. \eex$$

 

 

5. 考察 Riemann 函数的连续性, 可微性及可积性.

 

 

6. $f$ 为定义在某区域 $D\subset\bbR^n$ 上的一个函数, 有一阶连续偏导数, 且偏导数有界.

(1). 若 $D$ 为凸区域, 证明: $f$ 一致连续.

(2). 考察 $D$ 不是凸区域的情况.

 

 

7. 设 $\sed{f_n}$ 是 $\bbR$ 上的函数列, 且对任意 $x\in\bbR$, $\sed{f_n(x)}$ 有界. 证明: 存在一个开区间 $(a,b)$, 使得 $\sed{f_n(x)}$ 在该区间上一致有界.

 

 

8.

(1). 证明 $\vGa(s)$ 在 $(0,\infty)$ 内无穷次可微.

(2). 证明 $\vGa(s)$, $\ln \vGa(s)$ 都是严格凸函数.

 

 

9. 设 $f$ 在 $\bbR$ 上二阶可微, $f,f',f''$ 均 $\geq0$, 且存在 $c>0$ 使得 $f''(x)\leq cf(x)$. 证明:

(1). $\dps{\lim_{x\to -\infty}f'(x)=0}$.

(2). 存在常数 $a$, 使得 $f'(x)\leq af(x)$, 并求出 $a$.

 

 

10. 证明 Fejer 定理.

 

11. 设 $f$ 在 $[A,B]$ 上 Riemann 可积, $0<f<1$, 对于任意 $\ve>0$, 构造一个函数 $g$ 使得

 

(1). $g$ 是一个阶梯函数, 取值为 $0$ 或 $1$.

(2). 对于 $\forall\ [a,b]\subset [A,B]$, $$\bex \sev{\int_a^b [f(x)-g(x)]\rd x}<\ve. \eex$$

 

参考解答见家里蹲大学数学杂志.

 

时间: 2024-08-25 18:41:01

浙江大学2015年数学分析考研试题的相关文章

北京大学2015年数学分析考研试题

    1. 计算 $$\bex \lim_{x\to 0^+}\dfrac{\int_0^x e^{-t^2}\rd t-x}{\sin x-x}. \eex$$     2. 讨论广义积分 $\dps{\int_1^\infty \sez{\ln \sex{1+\dfrac{1}{x}}-\sin \dfrac{1}{x}}}$ 的敛散性.     3. 函数 $$\bex f(x,y)=\sedd{\ba{ll} \sex{1-\cos \dfrac{x^2}{y}}\sqrt{x^2+y

武汉大学2015年数学分析考研试题

一. 计算题 ($40'$)   1. $\dps{\lim_{x\to 1}\frac{(x^n-1)(x^{n-1}-1)\cdots(x^{n-k+1}-1)}{(x^1-1)(x^2-1)\cdots (x^k-1)}}$.   2. $\dps{\lim_{x\to0}\frac{ \sqrt[n]{\cos \al x}-\sqrt[m]{\cos\beta x}}{\sin^2x}}$, 其中 $m,n$ 为正整数.     3. $\dps{\vlm{n}\sum_{k=1}^n

浙江大学2017年数学分析考研试题

浙江大学2009年数学分析考研试题第7题参考解答

题目. 设 $f(x)$ 在 $[a,b]$上 可导, 导函数 $f'(x)$ 在 $[a,b]$ 上单调下降, 且 $f'(b)>0$. 证明: \[ \sev{\int\limits_a^b\cos f(x)\rd x}\leq \frac{2}{f'(b)}. \] 证明: 由换元法及积分第二中值定理, $$\beex \bea \int_a^b \cos f(x)\rd x &=\int_{f(a)}^{f(b)} \frac{\cos y\rd y}{f'(f^{-1}(y))}\

北京大学2017年数学分析考研试题

2017年北京大学硕士研究生数学分析真题 1.(10分) 证明:$$\lim_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.$$ 2.(10分) 证明:$\sum_{n=1}^{\infty }\frac{1}{1+nx^2}\sin \frac{x}{n^\alpha }$在任何有限区间上一致收敛的充要条件是:$\alpha > \frac{1}{2}$. 3.(10分) 设$\sum_

北京大学2016年数学分析考研试题

本文来自TangSong.   1.($15'$) 用开覆盖定理证明闭区间上连续函数必一致连续. 2.$(15')$ $f(x)$ 是 $[a,b]$ 上的实函数.叙述关于Riemann和 \[\sum_{k=1}^n f(t_i)(x_i-x_{i-1})\] 的Cauchy准则 (不用证明) 并用你叙述的Cauchy准则证明闭区间上的单调函数可积. 3.$(15')$ $(a,b)$ 上的连续函数 $f(x)$ 有反函数. 证明反函数连续. 4.$(15')$ $f(x_1,x_2,x_3)

华中师范大学2011年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]   一. (1)证明:由于${{x}_{1}}\in (0,\frac{\pi }{2}),{{x}_{n+1}}=\sin {{x}_{n}}$,则${{x}_{n}}\in (0,\frac{\pi }{2}),n=1,2,\cdots $ 且${{x}_{n+1}}=\sin {{x}_{n}}\le {{x}_{n}}$ 于是$\{{{x}_{n}}\}$单调递减且${{x}_{n}}\in (0,\frac{\pi }{2})$ 由单调有界原理可知:$\

武汉大学2013年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]   一: 1:解:\[\because \underset{x\to 0}{\mathop{\lim }}\,\ln (1+x)=x\] \[\therefore \underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt[n]{1+x}-1}{\ln (1+x)}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt[n]{1+x}-1}{x}=\underset{x\to 0}{\mat

华东师范大学2017年数学分析考研试题

转自(赵江彦): http://www.math.org.cn/forum.php?mod=viewthread&tid=37148