《中国人工智能学会通讯》——8.21 于演化优化的网络结构分析

8.21 于演化优化的网络结构分析

现实世界中的很多复杂系统都可以被抽象为复杂网络进行研究,如互联网、社会网络及生物网络等。经过近些年的研究,复杂网络理论已经成为研究复杂系统的重要工具。同时,从复杂网络理论延伸出了很多新课题,如社区检测、结构平衡、网络鲁棒性等。很多对网络结构的分析可以建模成优化问题。复杂网络上的优化问题往往是 NP-hard 问题,而传统的一些方法难以解决 NP-hard 问题。因此,为了更有效地解决复杂网络上的优化问题,研究人员提出了一系列演化优化算法。本文对基于演化优化的网络结构分析进行简要介绍。

时间: 2024-10-07 07:13:43

《中国人工智能学会通讯》——8.21 于演化优化的网络结构分析的相关文章

《中国人工智能学会通讯》——1.30 演化学习调研

1.30 演化学习调研 演化学习是基于演化算法来处理机器学习面临的优化问题的研究方向.演化算法源于 20 世纪 60 年代,随着计算设备的出现,研究者设计了在计算机中模拟生物进化过程的算法,包括遗传算法.演化规划算法.演化策略算法等,并发现这样的算法具有一定的优化能力,并且对优化目标函数的限制很少,可以用于目标函数不可导.不连续,甚至写不出目标函数的情况. 随着时间的发展,这些最初的算法以及之后设计的变种现在可以统称为演化算法(Evolutionaryalgorithms),因为这些算法有相近的

《中国人工智能学会通讯》——8.9 演化学习研究进展

8.9 演化学习研究进展 机器学习[1]是人工智能领域最重要的分支之一,主要研究计算机如何通过利用经验自动提高自身的性能,并已成为智能数据分析的主要方法.按照监督信息的不同,机器学习问题可以分为监督信息完全的监督学习.没有监督信息的无监督学习,以及介于两者之间的弱监督学习,其中弱监督学习包括监督信息滞后的强化学习.监督信息缺失的半监督学习.多示例学习等.AAAI Fellow 美国华盛顿大学 P. Domingos 教授指出"机器学习=表示 +评估 + 优化" [2] ,即不同的机器学

《中国人工智能学会通讯》——8.16 演化计算中的机器学习

8.16 演化计算中的机器学习 演化计算与机器学习是同属人工智能的紧密相连的两个研究方向,一方面演化算法 (EAs,evolutionary algorithms) 可以用于求解机器学习中的复杂优化问题:另一方面机器学习可辅助 EA.本文侧重后者. 需要指出的是,EA 本身也具有内在学习的能力,演化计算研究者从最初即意识到学习在 EA 中的重要性,例如遗传算法 (genetic algorithm) 中的积木块 (building blocks) 假设就是利用积木块来学习自变量之间的关联性,以提

中国人工智能学会通讯——意识科学研究进展 1.6 脑神经网络信息大规模获取和脑计划

1.6 脑神经网络信息大规模获取和脑计划 进入 21 世纪以来,认知科学得到更为 充分的关注.在全球范围内启动了多个脑 科学的重大科研计划.2013 年,美国启动 脑计划:2014 年,欧盟也实施了人脑计划: 此外,日本.中国等国相继或正在进行国 家级的脑科研项目. 美国的脑计划称为 The Brain Research through Advancing Innovative Neurotechnologies ( 简称 BRAIN),它由美国国防部 (DARPA). 国家卫生研究院 (NIH

《中国人工智能学会通讯》——8.5 鸽群优化在控制参数优化中的应用

8.5 鸽群优化在控制参数优化中的应用 经典 PID 控制方法在面对非线性和模型不确定性等因素时,难以满足控制性能的要求,同时控制器参数的选取会对被控对象的响应精度产生较大的影响.Dou et al [15] 将模型预测控制算法应用到了舰载机的控制器设计中,并通过使用鸽群优化对模型预测控制其参数进行优化设计,仿真分析表明,鸽群优化可以很好地对控制器参数进行优化设计,满足控制需求. Deng et al [16] 提出了一种新的自动着陆系统控制参数设计方法.为克服人工调参的问题,利用鸽群优化将参数

《中国人工智能学会通讯》——8.4 鸽群优化在编队中的应用

8.4 鸽群优化在编队中的应用 多无人机紧密编队控制具有极强的耦合性和非线性,由于模型输入存在强耦合 , 并且性能指标与模型参数并不存在直接的映射关系 , 因此紧密编队模型控制输入的选取是一个关键技术难题.段海滨等人[13]提出了一种基于捕食逃逸鸽群优化的无人机紧密编队协同控制方法: 基于人工势场法设计了外环控制器 , 将无人机紧密编队转化成一种抽象的人造势场中的运动 ; 基于鸽群优化设计了内环控制器 , 进行控制量的优化求解.在遵循鸽群优化基本思想的基础上 , 对其结构进行调整 , 并针对基本

《中国人工智能学会通讯》——8.3 鸽群优化

8.3 鸽群优化 基于鸽群在寻的过程中的特殊导航行为,Duanet al [7] 提出了一个新的仿生群体智能优化模型--鸽群优化算法.在这个算法中模仿鸽子寻的不同阶段使用的不同导航工具,提出了下面两种不同的算子模型. (1)地图和指南针算子(Map and CompassOperator):地图和指南针算子是模仿太阳和地球磁场这两种导航工具对鸽子的作用.鸽子通过磁感来感受磁场,从而在脑海中绘制地图,并把太阳当作指南针来调整方向.随着鸽群越来越逼近目的地,会逐步减少对太阳和磁性粒子的依赖. (2)

《中国人工智能学会通讯》——8.6 鸽群优化在图像处理中的应用

8.6 鸽群优化在图像处理中的应用 Duan et al [9] 将鸽群优化用于回声状态神经网络的参数优化,并将该改进后的递归神经网络算法用于图像复原,该图像复原算法可用于模糊图像复原和噪声图像复原.回声状态神经网络是一种递归神经网络,参数选择对该神经网络的性能有很大影响.首先使用正交设计策略初始化鸽群优化参数,通过对用不同程度和不同类型退化的图像进行复原以测试该图像复原算法的性能,并与多种其他图像复原算法进行了对比实验.实验结果表明,通过设置训练样本可以实验对不同程度和不同类型的退化图像进行复

《中国人工智能学会通讯》——8.24 基于演化优化的网络影响最大化

8.24 基于演化优化的网络影响最大化 影响最大化问题是社交网络分析中一个重要的研究问题.影响最大化是为了找到一个在网络中有最大影响力的节点集合.影响最大化在现实生活中有着广泛的应用,如社交媒体中广告的投放. 影响最大化被 Kempe.Kleinberg 和 Tardos建模为一个离散的优化问题.在独立级联模型中,影响最大化问题被证明是一个 NP-hard 问题.文献[34] 提出了一种基于集合编码的演化算法 (SGA) 来优化独立级联模型中的期望影响值 .在该算法中,染色体使用节点集合表示,其