Clarke and five-pointed star
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 242 Accepted Submission(s): 144
Problem Description
Clarke is a patient with multiple personality disorder. One day, Clarke turned into a learner of geometric.
When he did a research with polygons, he found he has to judge if the polygon is a five-pointed star at many times. There are 5 points on a plane, he wants to know if a five-pointed star existed with 5 points given.
Input
The first line contains an integer T(1≤T≤10),
the number of the test cases.
For each test case, 5 lines follow. Each line contains 2 real numbers xi,yi(−109≤xi,yi≤109),
denoting the coordinate of this point.
Output
Two numbers are equal if and only if the difference between them is less than 10−4.
For each test case, print Yes if
they can compose a five-pointed star. Otherwise, print No.
(If 5 points are the same, print Yes.
)
Sample Input
2
3.0000000 0.0000000
0.9270509 2.8531695
0.9270509 -2.8531695
-2.4270509 1.7633557
-2.4270509 -1.7633557
3.0000000 1.0000000
0.9270509 2.8531695
0.9270509 -2.8531695
-2.4270509 1.7633557
-2.4270509 -1.7633557
Sample Output
Yes
No
Hint
Source
题目大意:
克拉克是一名人格分裂患者。某一天克拉克分裂为一个几何学习者,在研究多边形。 在研究某一个多边形的时候,克拉克发现他多次遇到判断5个点是否能组成一个五角星的问题,在这里,这5个点分别代表五角星的五个顶点(顶角上的点)。于是他跑来想你求助,让你写出一个程序快速判定。即对于给出的5个点,判断这5个点是否能组成一个五角星。
官方题解:
容易看出只需要判断这5个点是否在一个正五边形上。
因此我们枚举排列,然后依次判断即可。
判定方法是,五条相邻边相等,五条对角线相等。
当然题目给的精度问题,窝只能说,如果泥做法不复杂,精度足够好的话,是可以过的。毕竟题目说的小于10^{-4}10−4是指理论上的,所以理论上适用所有的数之间的比较。所以有人问我开方前和开方后,我只能说,哪个精度高用哪个....
当然你也可以先求出凸包然后再判相邻距离......
个人看法:
就是把每条边算一下就好了,后来感觉不是很对,以为还要算一下角度,以为错了,但是竟然对了,嘿嘿,上代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <vector> #include <queue> #include <algorithm> #include <set> using namespace std; #define MM(a) memset(a,0,sizeof(a)) typedef long long LL; typedef unsigned long long ULL; const int maxn = 1e3+5; const int mod = 1000000007; const double eps = 1e-4; LL gcd(LL a, LL b) { if(b == 0) return a; return gcd(b, a%b); } struct node { double x,y; } p[25]; double d[30]; double dis(node p1, node p2) { return sqrt((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y)); } int check() { for(int i=0; i<4; i++) if(d[i+1]-d[i] > eps) return 0; return 1; } int main() { int k, T; scanf("%d",&T); while(T--) { k=0; for(int i=0; i<5; i++) scanf("%lf%lf",&p[i].x,&p[i].y); for(int i=0; i<5; i++) for(int j=i+1; j<5; j++) d[k++] = dis(p[i],p[j]); sort(d, d+10); if(check()) printf("Yes\n"); else printf("No\n"); } return 0; }