1.20 聊天机器人研究存在的挑战
当前,聊天机器人的研究存在的挑战包括:对话上下文建模、对话过程中的知识表示、对话策略学习、聊天机器人智能程度的评价等。
1)对话上下文建模:聊天是一个有特定背景的连续交互过程,在这一过程中经常出现上下文省略和指代的情况。一句话的意义有时要结合对话上下文或者相关的背景才能确定,而现有的自然语言理解主要基于上下文无关假设,因此对话上下文的建模成为聊天机器人系统的主要挑战之一。
2)对话过程中的知识表示:知识表示一直就是人工智能领域的重要课题,也是聊天机器人提供信息服务的基础。聊天机器人相关的领域任务可能有复杂的组成,牵涉很多的因素,只有了解这些因素的关系和相关的含义,才能与用户做到真正意义上的交流。
3)对话策略学习:对话策略涉及很多方面,其中最主要的是对话的主导方式。对话主导方式可以分为用户主导、系统主导和混合主导三种方式。在当前的对话管理研究中,系统应答的目标是自然、友好、积极,在不会发生问题的情况下,让用户尽可能自主,实现对话的混合主导。
4)聊天机器人智能程度的评价:目前聊天机器人智能程度的评价也是一项挑战。虽然可以采用一些通用的客观评价标准,如回答正确率、任务完成率、对话回合数、对话时间、系统平均响应时间、错误信息率等,对聊天机器人进行评价,评价的基本单元是单轮对话。但是,由于人机对话过程是一个连续的过程,而对不同聊天机器人系统的连续对话的评价仅能保证首句输入的一致性,当对话展开后,不同系统的回复不尽相同,因此不能简单地将连续对话切分成单轮对话去评价。于是设计合理的人工主观评价也许能够成
为客观评价标准之外,对聊天机器人系统智能程度评价的重要指标。
时间: 2024-10-22 15:59:22